Skip to main content

Advertisement

Log in

An Energy-Efficient Model of Random Cognitive Radio Network: Rayleigh-Lognormal Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Motivated by the current demand for improvements in transmission rate and energy efficiency of random wireless cellular networks, we investigate the theoretical model of random cognitive radio network in Rayleigh-lognormal fading environment. In such a network, we derive an analytical expression for the connection probability, transmission rate, and energy efficiency of a secondary network in a single-tier downlink scenario, considering the probabilities of unoccupied channel selection and of successful transmission, where source-destination pairs are randomly located according to Poisson point processes. Moreover, we approach the problem of optimization of transmission rate and energy efficiency using a required connection probability constraint to improve the system performance. Our numerical results indicate that there exists an optimal combination of transmission power and secondary transmitter density where transmission rate and energy efficiency are maximized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Based on spectrum sensing results, SUs make a channel ranking table depending on the measurement of channel quality \(\left( i.e., \left[ max(P_{d}), min(P_{f}), min(\mathrm{SNR(dB)})\right] \right)\) where SNR is the received signal-to-noise ratio of PT. Then the optimum channel is selected comparison between the measurement of the channel and the standard value \(\left( i.e., \,\left[ P_d \ge 0.9, P_f \le 0.1, \mathrm{SNR} \le -20\, \mathrm{dB}\right] \, \right)\).

References

  1. Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  2. An, B., et al. (2015). Connectivity analysis of cognitive radio ad-hoc networks with shadow fading. Ksii Transactions on Internet & Information Systems, 9(9), 3335–3356.

    Google Scholar 

  3. Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on communications, 59(11), 3122–3134.

    Article  Google Scholar 

  4. Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.

    Article  Google Scholar 

  5. ElSawy, H., Sultan-Salem, A., Alouini, M. S., & Win, M. Z. (2016). Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Communications Surveys & Tutorials, 19(1), 167–203.

    Article  Google Scholar 

  6. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  7. Guan, P., & Di Renzo, M. (2015). Stochastic geometry analysis of uplink cellular networks with multi-antenna base stations and interference-aware fractional power control. In 2015 international conference on communications, management and telecommunications (ComManTel) (pp. 13–17). IEEE.

  8. Guo, A., & Haenggi, M. (2013). Spatial stochastic models and metrics for the structure of base stations in cellular networks. IEEE Transactions on Wireless Communications, 12(11), 5800–5812.

    Article  Google Scholar 

  9. Haneggi, M. (2012). Stochastic geometry for wireless networks (p. 2012). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  10. Herath, P., Tellambura, C., & Krzymien, W. A. (2015). Stochastic geometry modeling of cellular uplink power control under composite rayleigh-lognormal fading. In 2015 IEEE 82nd vehicular technology conference (VTC2015-Fall) (pp. 1–5). IEEE.

  11. Li, C., Zhang, J., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517.

    Article  Google Scholar 

  12. Li, L., Zhou, X., Xu, H., Li, G. Y., Wang, D., & Soong, A. (2010). Energy-efficient transmission in cognitive radio networks. In 2010 7th IEEE consumer communications and networking conference (pp. 1–5). IEEE.

  13. Li, X., Liu, H., Roy, S., Zhang, J., Zhang, P., & Ghosh, C. (2012). Throughput analysis for a multi-user, multi-channel aloha cognitive radio system. IEEE Transactions on Wireless Communications, 11(11), 3900–3909.

    Article  Google Scholar 

  14. Mahmud, A., & Hamdi, K. A. (2014). A unified framework for the analysis of fractional frequency reuse techniques. IEEE Transactions on Communications, 62(10), 3692–3705.

    Article  Google Scholar 

  15. MATLAB. (2017). The mathworks, inc. [Online]. Retrieved December, 2017 from https://www.mathworks.com/products/matlab.html.

  16. Ni, L., Da, X., Hu, H., & Zhang, M. (2018). Energy efficiency design for secure miso cognitive radio network based on a nonlinear eh model. Mathematical Problems in Engineering 2018.

  17. Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks. Berlin: Springer.

    Book  Google Scholar 

  18. Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on cognitive radio for internet of things. Journal of Network and Computer Applications, 89, 14–25.

    Article  Google Scholar 

  19. Ren, J., Zhang, Y., Zhang, N., Zhang, D., & Shen, X. (2016). Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3143–3156.

    Article  Google Scholar 

  20. Sabuj, S. R., & Hamamura, M. (2015). Energy efficiency analysis of cognitive radio network using stochastic geometry. In 2015 IEEE conference on standards for communications and networking (CSCN) (pp. 245–251). IEEE.

  21. Sabuj, S. R., & Hamamura, M. (2017). Outage and energy-efficiency analysis of cognitive radio networks: A stochastic approach to transmit antenna selection. Pervasive and Mobile Computing, 42, 444–469.

    Article  Google Scholar 

  22. Sabuj, S. R., & Hamamura, M. (2017). Random cognitive radio network performance in Rayleigh-lognormal environment. In 2017 14th IEEE annual consumer communications & networking conference (CCNC) (pp. 992–997). IEEE.

  23. Sabuj, S. R., & Hamamura, M. (2017). Uplink modeling of cognitive radio network using stochastic geometry. Performance Evaluation, 117, 1–15.

    Article  Google Scholar 

  24. Sabuj, S. R., & Hamamura, M. (2018). Two-slope path-loss design of energy harvesting in random cognitive radio networks. Computer Networks, 142, 128–141.

    Article  Google Scholar 

  25. Soh, Y. S., Quek, T. Q., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on selected areas in communications, 31(5), 840–850.

    Article  Google Scholar 

  26. Wang, Z., & Zhang, W. (2014). Opportunistic spectrum sharing with limited feedback in poisson cognitive radio networks. IEEE Transactions on Wireless Communications, 13(12), 7098–7109.

    Article  Google Scholar 

  27. Wen, Y., Loyka, S., & Yongacoglu, A. (2012). Asymptotic analysis of interference in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(10), 2040–2052.

    Article  Google Scholar 

  28. Win, M. Z., Pinto, P. C., & Shepp, L. A. (2009). A mathematical theory of network interference and its applications. Proceedings of the IEEE, 97(2), 205–230.

    Article  Google Scholar 

  29. Yang, X., & Fapojuwo, A. O. (2014). Performance analysis of poisson cellular networks with lognormal shadowed rayleigh fading. In 2014 IEEE international conference on communications (ICC) (pp. 1042–1047). IEEE.

  30. Yin, X., & Cheng, X. (2016). Propagation channel characterization, parameter estimation, and modeling for wireless communications. Hoboken: Wiley.

    Google Scholar 

  31. Zhang, X., & Haenggi, M. (2014). A stochastic geometry analysis of inter-cell interference coordination and intra-cell diversity. IEEE Transactions on Wireless Communications, 13(12), 6655–6669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saifur Rahman Sabuj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabuj, S.R., Nur, T.E. & Hamamura, M. An Energy-Efficient Model of Random Cognitive Radio Network: Rayleigh-Lognormal Environment. Wireless Pers Commun 114, 1963–1981 (2020). https://doi.org/10.1007/s11277-020-07457-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07457-1

Keywords

Navigation