Skip to main content
Log in

Performance Analysis in Double-Rayleigh Channels with Diversity Combining Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we provide a performance analysis of communication systems over Rayleigh-product channels with two popular diversity combining techniques, namely maximal ratio combining (MRC) and selection combining (SC). We first derive new closed-form expressions for the exact cumulative distribution function (CDF) and probability density function (PDF) of the post-processing signal-to-noise ratio (SNR) for these two schemes. Secondly, we present the first-order asymptotic expansions for these CDF and PDF functions. Performance of MRC and SC techniques, in terms of outage probability, average symbol error rate (SER) and ergodic capacity, is derived using the exact expressions of CDF and PDF. Furthermore, we present new expressions for key metrics characterizing the system performance at the high and low SNR regimes. Thanks to the asymptotic CDF and PDF expressions, we compute the average SER in the high SNR regime and derive the diversity order and array gain parameters. In addition, we provide simple expressions for the ergodic capacity in the asymptotic low and high SNR regimes. Monte-Carlo simulations are conducted and their results agree well with the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For the definition of slowly varying function, please see [23, 24].

  2. We note that the unconditional \(\beta ^i\) are dependent. Hence, the order statistics analysis of the unconditional SNRs is complicate.

References

  1. Brennan, D. (1959). Linear diversity combining techniques. Proceedings of the IRE, 47(6), 1075.

    Article  Google Scholar 

  2. Proakis, J., & Salehi, M. (2007). Digital communications (5th ed.). New York City: McGraw-Hill Higher Education.

    Google Scholar 

  3. Eng, T., Kong, N., & Milstein, L. B. (1996). Comparison of diversity combining techniques for Rayleigh-fading channels. IEEE Transactions on Communication, 44(9), 1117.

    Article  Google Scholar 

  4. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  5. Simon, M. K., & Alouini, M. S. (1998). A unified approach to the performance analysis of digital communication over generalized fading channels. Proceedings of the IEEE, 86(9), 1860.

    Article  Google Scholar 

  6. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (1st ed.). Hoboken: Wiley-Interscience.

    Google Scholar 

  7. Pierce, J., & Stein, S. (1960). Multiple diversity with nonindependent fading. Proceedings of the IRE, 48(1), 89.

    Article  Google Scholar 

  8. Aalo, V. (1995). Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment. IEEE Transactions on Communications, 43(8), 2360.

    Article  Google Scholar 

  9. Luo, J., Zeidler, J., & McLaughlin, S. (2001). Performance analysis of compact antenna arrays with MRC in correlated Nakagami fading channels. IEEE Transactions on Vehicular Technology, 50(1), 267.

    Article  Google Scholar 

  10. Win, M. Z., Chrisikos, G., & Winters, J. H. (2000). MRC performance for \(M\)-ary modulation in arbitrarily correlated Nakagami fading channels. IEEE Communications Letters, 4(10), 301.

    Article  Google Scholar 

  11. Dietze, K., Dietrich, C. B., & Stutzman, W. L., (2002). Analysis of a two-branch maximal ratio and selection diversity system with unequal SNRs and correlated inputs for a Rayleigh fading channel. IEEE Transactions on Wireless Communications, 1(2), 274.

    Article  Google Scholar 

  12. Zhang, Q., & Lu, H. (2002). A general analytical approach to multi-branch selection combining over various spatially correlated fading channels. IEEE Transactions on Communications, 50(7), 1066.

    Article  Google Scholar 

  13. Gesbert, D., Bolcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels: models and performance prediction. IEEE Transactions on Communications, 50(12), 1926.

    Article  Google Scholar 

  14. Almers, P., Tufvesson, F., & Molisch, A. F. (2006). Keyhole effect in MIMO wireless channels: Measurements and theory. IEEE Transactions on Wireless Communications, 5(12), 3596.

    Article  Google Scholar 

  15. Zhong, C., Ratnarajah, T., Zhang, Z., Wong, K. K., & Sellathurai, M. (2014). Performance of rayleigh-product MIMO channels with linear receivers. IEEE Transactions on Wireless Communications, 13(4), 2270.

    Article  Google Scholar 

  16. Jin, S., McKay, M. R., Wong, K. K., & Gao, X. (2008). Transmit beamforming in Rayleigh product MIMO channels: Capacity and performance analysis. IEEE Transactions on Signal Processing, 56(10), 5204.

    Article  MathSciNet  Google Scholar 

  17. Zhong, C., Jin, S., & Wong, K. K. (2009). MIMO rayleigh-product channels with co-channel interference. IEEE Transactions on Communications, 57(6), 1824.

    Article  Google Scholar 

  18. Wu, Y., Jin, S., Gao, X., Xiao, C., & McKay, M. R. (2012). MIMO multichannel beamforming in Rayleigh-product channels with arbitrary-power co-channel interference and noise. IEEE Transactions on Wireless Communications, 11(10), 3677.

    Article  Google Scholar 

  19. Wongtrairat, W., & Supnithi, P. (2009). Performance of digital modulation in double Nakagami-\(m\) fading channels with MRC diversity. IEICE Transactions on Communications, E92.B(2), 559.

    Article  Google Scholar 

  20. Talha, B., Patzold, M., & Primak, S. (2010). In 2010 IEEE international conference on communications workshops (ICC)

  21. Bithas, P. S., Kanatas, A. G., da Costa, D. B., Upadhyay, P. K., & Dias, U. S. (2018). On the double-generalized gamma statistics and their application to the performance analysis of V2V communications. IEEE Transactions on Communications, 66(1), 448.

    Article  Google Scholar 

  22. Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press.

    MATH  Google Scholar 

  23. Zhang, Y., & Tepedelenlioglu, C. (2012). Applications of Tauberian theorem for high-SNR analysis of performance over fading channels. IEEE Transactions on Wireless Communications, 11(1), 296.

    Article  Google Scholar 

  24. Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1989). Regular variation (Vol. 27). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  25. Chen, Z., Yuan, J., & Vucetic, B. (2005). Analysis of transmit antenna selection/maximal-ratio combining in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 54(4), 1312.

    Article  Google Scholar 

  26. Wang, Z., & Giannakis, G. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389.

    Article  Google Scholar 

  27. Muller, A., & Speidel, J. (2006). In First international conference on communications and networking in China, 2006. ChinaCom’06

  28. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073.

    Article  Google Scholar 

  29. Sanayei, S., & Nosratinia, A. (2007). Antenna selection in keyhole channels. IEEE Transactions on Communications, 55(3), 404.

    Article  Google Scholar 

  30. Sanayei, S., Hedayat, A., & Nosratinia, A. (2007). Space-time codes in keyhole channels: Analysis and design. IEEE Transactions on Wireless Communications, 6(6), 2006.

    Article  Google Scholar 

  31. Lu, J., Tjhung, T., & Chai, C. (1998). Error probability performance of \(L\)-branch diversity reception of MQAM in rayleigh fading. IEEE Transactions on Communications, 46(2), 179.

    Article  Google Scholar 

  32. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals and series, volumn 3: More special functions. London: Gordon and Breach.

    MATH  Google Scholar 

  33. Lozano, A., Tulino, A., & Verdu, S. (2005). High-SNR power offset in multiantenna communication. IEEE Transactions on Information Theory, 51(12), 4134.

    Article  MathSciNet  Google Scholar 

  34. Verdu, S. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319.

    Article  MathSciNet  Google Scholar 

  35. Lozano, A., Tulino, A., & Verdu, S. (2003). Multiple-antenna capacity in the low-power regime. IEEE Transactions on Information Theory, 49(10), 2527.

    Article  MathSciNet  Google Scholar 

  36. Shamai, S., & Verdu, S. (2001). The impact of frequency-flat fading on the spectral efficiency of CDMA. IEEE Transactions on Information Theory, 47(4), 1302.

    Article  MathSciNet  Google Scholar 

  37. Shin, H., & Win, M. Z. (2008). MIMO diversity in the presence of double scattering. IEEE Transactions on Information Theory, 54(7), 2976.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lassaad Ammari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, M.L., Roy, S. Performance Analysis in Double-Rayleigh Channels with Diversity Combining Techniques. Wireless Pers Commun 114, 2529–2550 (2020). https://doi.org/10.1007/s11277-020-07488-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07488-8

Keywords