Skip to main content
Log in

Performance Analysis of Free Space Optical Networks Using the Beta-Average Recursive Estimator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The present paper aims to investigate and analyze the performance of a point-to-point optical network under a free-space optical (FSO) communication system. Free-space optical communication is a sophisticated technique that has been employed as a channel model of optical wireless communication to transfer large amounts of data at high speeds. However, two important issues, that could affect the source of the FSO link, have been added. The first one is related to chromatic dispersion which is attributed to the chirping phenomenon of the optical signal; the second issue concerns the secondary jamming power that can be generated by some Radio Frequencies from base stations. It is important to note that the effects of atmospheric turbulence, misalignment fading, and atmospheric attenuation as well as geometric losses were also taken into account. The purpose of this research work is to overcome these effects, in order to increase the data transmission rate from 1.25 to 50 Gbps in the proposed system. Consequently, a very efficient solution is suggested to correct these problems and to make the FSO link more reliable using the Beta-Average Recursive Estimator. In addition, the numerical results obtained are presented for the purpose of validating our proposal through the evaluation of the performance of a transmission link in terms of the bit error rate and Q-factor. In the end, the resulting conclusions are listed, explained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. FCC. (2012). Spectrum policy task force report. Et docket no 02-155.

  2. Akyildz, I. F., Balakrishnan, B. F., & Lo, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62. https://doi.org/10.1016/j.phycom.2010.12.003.

    Article  Google Scholar 

  3. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio, Dissertation. Royal Institute of Technology.

  4. Adardour, H. E., Meliani, M., & Hachemi, H. M. (2017). Improved local spectrum sensing in cluttered environment using a simple recursive estimator. Computers & Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2016.11.037.

    Article  Google Scholar 

  5. Adardour, H. E., Meliani, M., & Hachemi, H. M. (2015). Estimation of the spectrum sensing for the cognitive radios: Test analysing using Kalman filter. Wireless Personal Communications, 84(2), 1535–1549. https://doi.org/10.1007/s11277-015-2701-y.

    Article  Google Scholar 

  6. Hachemi, H. M., Feham, M., & Adardour, H. E. (2016). Predicting the probability of spectrum sensing with LMS process in heterogeneous LTE networks. Radioengineering, 25(4), 808–820. https://doi.org/10.13164/re.2016.0808.

    Article  Google Scholar 

  7. Willebrand, H., & Ghuman, B. S. (2002). Free space optics: Enabling optical connectivity in today’s network. Indianapolis: SAMS publishing.

    Google Scholar 

  8. Stotts, L. B., & Stadler, B. (2008). Free space optical communications: Coming of age (p. 69510W). Proc: SPIE.

    Google Scholar 

  9. Liu, X. (2009). Free-space optics optimization models for building sway and atmospheric interference using variable wavelength. IEEE Transactions on Communications, 57(2), 492–498. https://doi.org/10.1109/tcomm.2009.02.070089.

    Article  Google Scholar 

  10. Ping, W., Ranran, W., Lixin, G., Tian, C., & Yintang, Y. (2016). On the performances of relay-aided FSO system over M distribution with pointing errors in presence of various weather conditions. Optics Communication, 367, 59–67. https://doi.org/10.1016/j.optcom.2016.01.004.

    Article  Google Scholar 

  11. Wainright, E., Refai, H. H., & Sluss, J. J., Jr. (2005). Wavelength diversity in free-space optics to alleviate fog effects. Proccesings of the SPIE, 5712(16), 110–118.

    Article  Google Scholar 

  12. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., & Uysal, M. (2009). Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 8(2), 951–957. https://doi.org/10.1109/TWC.2009.071318.

    Article  Google Scholar 

  13. Datsikas, C. K., Peppas, K. P., Sagias, N. C., & Tombras, G. S. (2010). Serial free-space optical relaying communications over Gamma-Gamma atmospheric turbulence channels. IEEE/OSA Journal of Optical Communication Networks, 2(8), 576–586. https://doi.org/10.1364/JOCN.2.000576.

    Article  Google Scholar 

  14. Kumar, N., & Singh, T. (2014). 2.50 Gbit/s optical CDMA over FSO communication system. Optik-Int J Light Electron Optics, 125(16), 4538–4542. https://doi.org/10.1016/j.ijleo.2014.02.011.

    Article  Google Scholar 

  15. Zhao, J., Zhao, S. H., Zhao, W. H., & Chen, K. F. (2017). Performance analysis for mixed FSO/RF Nakagami-m and Exponentiated Weibull dual-hop airborne systems. Optics Communication, 2017(392), 294–299. https://doi.org/10.1016/j.optcom.2017.01.033.

    Article  Google Scholar 

  16. Aarthi, G., Prabu, K., & Ramachandra, G. R. (2017). Aperture averaging effects on the average spectral efficiency of FSO links over turbulence channel with pointing errors. Optics Communication, 385, 136–142. https://doi.org/10.1016/j.optcom.2016.10.041.

    Article  Google Scholar 

  17. Zhou, H., Hu, D., Mao, S., Agrawal, P. (2013). Joint relay selection and power allocation in cooperative FSO networks. In Proceedings of IEEE GLOBECOM’13, Atlanta, GA (pp. 1–6). https://doi.org/10.1109/GLOCOM.2013.6831436.

  18. Karimi, M., & Uysal, M. (2012). Novel adaptive transmission algorithms for free-space optical links. IEEE Transactions on Communications, 60(12), 3808–3815. https://doi.org/10.1109/TCOMM.2012.091012.110550.

    Article  Google Scholar 

  19. Safari, M., Rad, M., & Uysal, M. (2012). Multi-hop relaying over the atmospheric poisson channel: Outage analysis and optimization. IEEE Transactions on Communications, 60(3), 817–829. https://doi.org/10.1109/TCOMM.2012.010512.100630.

    Article  Google Scholar 

  20. Maurice, B. (1998). Traitement numérique du signal (6th ed.). Paris: Dunod.

    MATH  Google Scholar 

  21. Sooraj, P., Anurag, S., Harsukhpreet, S., & Harjit, P. S. (2016). Performance investigation of 40 GB/s DWDM over free space optical communication system using RZ modulation format. Advances in Optical Technologies. https://doi.org/10.1155/2016/4217302.

    Article  Google Scholar 

  22. Pierre, L. (2008). Télécoms sur fibres optiques (© Lavoisier, 11 rue Lavoisier 75008 Paris, vol.366, 2008), ISBN 3e édition 978-7462-1844-4.

  23. Jean-Pierre M. (2003). Télécoms optiques, composants à fibres, systèmes de transmission. (© Lavoisier, 11 rue Lavoisier 75008 Paris, vol.239, 2003), ISBN 2-7462-0721-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroun Errachid Adardour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adardour, H.E., Kameche, S. Performance Analysis of Free Space Optical Networks Using the Beta-Average Recursive Estimator. Wireless Pers Commun 114, 2717–2732 (2020). https://doi.org/10.1007/s11277-020-07499-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07499-5

Keywords

Navigation