Skip to main content
Log in

Finding Best Matching Community for Common Nodes in Mobile Social Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increase of mobile data users has created traffic congestion in current cellular networks. Due to this, mobile network providers have been facing difficulty in delivering the best services for customers. Since, detecting community in mobile social network is a valuable technique to leverage the downlink traffic congestion by enhancing local communications within the community, it attracts the attention of many researchers. Therefore, developing an algorithm, which detects community, plays a key role in mobile social network. In this paper, first, we proposed external density metrics to detect mobile social network. External density is defined as the ratio of outgoing links to total links of the community. Second, method to find the best group for common node is proposed. Therefore, an external density algorithm, makes a fair partition by grouping common nodes to a community with relatively higher external density. As a result, the overall modularity value of the network has increased. Third, the proposed algorithm is evaluated. Hence, the evaluation results confirm that our proposed approach has demonstrated good performance improvements than traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Visual, C., & Index, N. (2016). Cisco visual networking index: Global mobile data traffic forecast update. 21.

  2. Didwania, A., & Narmawala, Z. (2015). A comparative study of various community detection algorithms in the mobile social network. In 2015 5th Nirma Univ Int Conf Eng, (pp. 1–6).

  3. Zhang, Y., & Yeung, D. Y. (2012). Overlapping community detection via bounded nonnegative matrix tri-factorization. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining—KDD ’12. New York, New York, USA: ACM Press.

  4. Lin, W., Kong, X., Yu, P. S., Wu, Q., Jia, Y., & Li, C. (2012). Community detection in incomplete information networks. In Proceedings of the 21st international conference on World Wide Web - WWW ’12. (p. 341) New York, USA: ACM Press .

  5. Brodka, P., Saganowski, S., & Kazienko, P. (2013). Group evolution discovery in social networks. arXiv:1304.4137. Accessed 27 Oct 2017.

  6. Cazabet, R., Amblard, F., & Hanachi, C. (2010). Detection of overlapping communities in dynamical social networks. In 2010 IEEE Second international conference on social computing. (pp. 309–314)IEEE .

  7. Stephen, P. B., & Martin, G. E. (2000). Models of core/periphery structures. Social Networks, 21, 375–395.

    Google Scholar 

  8. Snyder, D., & Kick, E. L. (1979). Structural position in the world system and economic growth, 1955–1970: A multiple-network analysis of transnational interactions. American Journal of Sociology, 84(5), 1096–1126.

    Google Scholar 

  9. Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499.

    Google Scholar 

  10. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Elsevier, Amsterdam

  11. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    MATH  Google Scholar 

  12. Chobe, S., & Zhan, J. (2019). Advancing community detection using keyword attribute search. Journal of Big Data, 6(1), 83.

    Google Scholar 

  13. Wu, L., Zhang, Q., & Chen, C. H. (2019). Deep community detection method for social networks.

  14. Chamberlain, B. P., Levy-Kramer, J., Humby, C., & Deisenroth, M. P. (2018). Real-time community detection in full social networks on a laptop. PloS ONE, 13(1), e0188702.

    Google Scholar 

  15. Gu, K., Liu, D., & Wang, K. (2019). Social community detection scheme based on social-aware in mobile social networks. IEEE Access, 7, 173407–173418.

    Google Scholar 

  16. Rahiminejad, S., Maurya, M. R., & Subramaniam, S. (2019). Topological and functional comparison of community detection algorithms in biological networks. BMC Bioinformatics, 20(1), 212.

    Google Scholar 

  17. Jiang, J., Zhang, S., Li, B., & Li, B. (2016). Maximized cellular traffic offloading via device-to-device content sharing. IEEE Journal on Selected Areas in Communications, 34, 82–91.

    Google Scholar 

  18. Deressa Amentie, M., Sheng, M., Song, J., & Liu, J. (2016). Minimum delay guaranteed cooperative device-to-device caching in 5G wireless networks. In 2016 8th International conference on wireless communications and signal processing (WCSP). (pp. 1–5)IEEE.

  19. Zhou, Z., & Zhang, X. (2015). Directional antenna-based single channel full duplex. IET Communications, 9, 1999–2006.

    Google Scholar 

  20. Didwania, A., & Narmawala, Z. (2016). A comparative study of various community detection algorithms in the mobile social network. In NUiCONE 2015-5th Nirma Univ Int Conf Eng.

  21. Newman, M. E., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 036122.

    Google Scholar 

  22. Boujlaleb, L., Idarrou, A., Mammass, D., & Sarr, I. (2015). User-centric approach of detecting temporary community. In 2015 Third world conference on complex systems (WCCS). (pp. 1–6)IEEE .

  23. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 26113.

    Google Scholar 

  24. Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. J. (2007). SCAN: A structural clustering algorithm for networks. 13th ACM SIGKDD Int conf knowl discov data min. (pp. 824–833)

  25. Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466, 761–764.

    Google Scholar 

  26. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888–905.

    Google Scholar 

  27. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of National Academy of Sciences, 99, 7821–7826.

    MathSciNet  MATH  Google Scholar 

  28. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–174.

    MathSciNet  Google Scholar 

  29. Piccardi, C. (2011). Finding and testing network communities by lumped Markov chains. PLoS ONE, 6, e27028.

    Google Scholar 

  30. Darst, R., Reichman, D., Ronhovde, P., & Nussinov, Z. (2013). An edge density definition of overlapping and weighted graph communities.

  31. Ronhovde, R. K., Peter, R., & Nussinov, Z. (2013). An edge density definition of overlapping and weighted graph communities, arXiv preprint arXiv:1301.3120.

  32. Caputo, A., Socievole, A., & De Rango, F. (2015). CRAWDAD dataset unical/socialblueconn (v. 2015-02-08). CRAWDAD Wirel Netwdata Arch.

  33. Zhe, C., Sun, A., & Xiao, X. (2019). Community detection on large complex attribute network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2041–2049).

  34. Rigi, M. A., Moser, I., & Farhangi, M. M. (2017). Derivatives in graph space with applications for finding and tracking local communities. In IEEE/ACM International conference on advances in social networks analysis and mining (pp. 79–107). Springer, Cham.

  35. Ozturk, K., Polat, F., & Özyer, T. (2017). An evolutionary approach for detecting communities in social networks. In IEEE/ACM International conference on advances in social networks analysis and mining (pp. 17–44). Springer, Cham.

  36. Lei, J., Chen, K., & Lynch, B. (2020). Consistent community detection in multi-layer network data. Biometrika, 107(1), 61–73.

    MathSciNet  MATH  Google Scholar 

  37. Newman, M. E. J., Cantwell, G. T., & Young, J. G. (2020). Improved mutual information measure for clustering, classification, and community detection. Physical Review E, 101(4), 042304.

    MathSciNet  Google Scholar 

  38. Galvan, G., & Agarwal, J. (2018). Community detection in action: Identification of critical elements in infrastructure networks. Journal of Infrastructure Systems, 24(1), 04017046.

    Google Scholar 

  39. Zhao, Z., Zheng, S., Li, C., Sun, J., Chang, L., & Chiclana, F. (2018). A comparative study on community detection methods in complex networks. Journal of Intelligent and Fuzzy Systems, 35(1), 1077–1086.

    Google Scholar 

  40. Tripathi, B., Parthasarathy, S., Sinha, H., Raman, K., & Ravindran, B. (2019). Adapting community detection algorithms for disease module identification in heterogeneous biological networks. Frontiers in Genetics, 10, 164.

    Google Scholar 

  41. Karataş, A., & Şahin, S. (2018). Application areas of community detection: A review. In 2018 International congress on big data, deep learning and fighting cyber terrorism (IBIGDELFT) (pp. 65–70). IEEE.

  42. Liu, Z., Wang, H., Cheng, L., Peng, W., & Li, X. (2019). Temporal label walk for community detection and tracking in temporal network. Applied Sciences, 9(15), 3199.

    Google Scholar 

  43. Laib, M., Guignard, F., Kanevski, M., & Telesca, L. (2019). Community detection analysis in wind speed-monitoring systems using mutual information-based complex network. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(4), 043107.

    Google Scholar 

  44. Abbe, E. (2017). Community detection and stochastic block models: Recent developments. The Journal of Machine Learning Research, 18(1), 6446–6531.

    MathSciNet  Google Scholar 

  45. Berahmand, K., Bouyer, A., & Vasighi, M. (2018). Community detection in complex networks by detecting and expanding core nodes through extended local similarity of nodes. IEEE Transactions on Computational Social Systems, 5(4), 1021–1033.

    Google Scholar 

  46. Zhu, P., Dai, X., Li, X., Gao, C., Jusup, M., & Wang, Z. (2019). Community detection in temporal networks via a spreading process. EPL (Europhysics Letters), 126(4), 48001.

    Google Scholar 

  47. Zhe, C., Sun, A., & Xiao, X. (2019). Community detection on large complex attribute network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2041–2049).

  48. Geng, J., Bhattacharya, A., & Pati, D. (2019). Probabilistic community detection with unknown number of communities. Journal of the American Statistical Association, 114(526), 893–905.

    MathSciNet  MATH  Google Scholar 

  49. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 26113.

    Google Scholar 

  50. Rombach, M. P., Porter, M. A., Fowler, J. H., & Mucha, P. J. (2014). Core-periphery structure in networks. SIAM Journal on Applied Mathematics, 74, 167–190.

    MathSciNet  MATH  Google Scholar 

  51. Lancichinetti, A., & Fortunato, S. (2011). Limits of modularity maximization in community detection. Physical Review E, 84, 66122.

    Google Scholar 

  52. Good, B. H., De Montjoye, Y. A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81(4), 046106.

    MathSciNet  Google Scholar 

  53. Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical programming. European Physical Journal B: Condensed Matter and Complex Systems, 66, 409–418.

    MathSciNet  MATH  Google Scholar 

  54. Sales-Pardo, M., Guimera, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of National Academy of Sciences, 104, 15224–15229.

    Google Scholar 

  55. Wakita, K., & Tsurumi, T. (2007). Finding community structure in mega-scale social networks. In Proceedings of the 16th international conference on World Wide Web - WWW ’07.(p. 1275) New York, USA: ACM Press.

  56. Shiga, M., Takigawa, I., & Mamitsuka, H. (2007). A spectral clustering approach to optimally combining numerical vectors with a modular network. Proc 13th ACM SIGKDD int conf knowl discov data min. (pp. 647–656).

  57. Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.

    Google Scholar 

  58. PEARSON, K. (1905). The problem of the random walk. Nature, 72, 318–318.

    Google Scholar 

  59. Newman, M. E. J. (2010). Mark Newman-networks—an introduction. Oxford: Oxford University Press.

    Google Scholar 

  60. Barrat, A., & Barthelemy AV, M. (2009). Dynamical processes on complex networks. Journal of Statistical Physics, 135, 773–74.

    Google Scholar 

  61. Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452–473.

    Google Scholar 

  62. Why Anchorage is not (that) important: Binary ties and sample selection | Tore Opsahl. https://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-ties-and-sample-selection/. Accessed 29 Oct 2017.

  63. OpenFlights: Airport and airline data. https://openflights.org/data.html. Accessed 28 Oct 2017.

  64. Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences USA, 105, 1118–1123.

    Google Scholar 

  65. Rosvall, M., Axelsson, D., & Bergstrom, C. T. (2009). The map equation. The European Physical Journal Special Topics, 178, 13–23.

    Google Scholar 

  66. Delay- tolerant networking -Wikipedia. https://en.wikipedia.org/wiki/Delay-tolerant-networking. Accessed 3 Nov 2017.

  67. Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra (solutions), 1026, 14–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muluneh Mekonnen Tulu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulu, M.M., Hou, R., Gerezgiher, S.A. et al. Finding Best Matching Community for Common Nodes in Mobile Social Networks. Wireless Pers Commun 114, 2889–2908 (2020). https://doi.org/10.1007/s11277-020-07508-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07508-7

Keywords

Navigation