Skip to main content
Log in

A Hybrid Approach for Extracting EMG signals by Filtering EEG Data for IoT Applications for Immobile Persons

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Brain Computer interface (BCI) is an emerging technology which empowers human to regulate the computer or other electronic gadgets with brain signals. This paper presents an electroencephalography (EEG) based BCI system with filtered electromyographic (EMG) signals for automating the home appliances. EEG signals are usually contaminated by various noise or artifacts which have to be removed in order to correctly interpret the desired output. The system focuses on extracting the EMG signals generated from the hand movement which can be used by a cripple, paraplegic, lame, paralyzed or a person with special need to enhance their independence and increase their capabilities. EEG signals are recorded and filtered out using hybrid digital filters. In this work, the filtered signals are sent to the micro-controller to operate different devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Retrieved from June 18, 2018 https://whatis.techtarget.com/definition/brain-computer-interface-BCI

  2. Bablani, A., Edla, D. R., Tripathi, D., & Kuppili, V. (2019). An efficient concealed information test: EEG feature extraction and ensemble classification for lie identification. Machine Vision Applications, 30(5), 813–832.

    Article  Google Scholar 

  3. Lee, W. T., Nisar, H., Malik, A. S., & Ho Yeap, K. (2013). A brain computer interface for smart home control. In 2013 IEEE International Symposium on Consumer Electronics (ISCE) (pp. 35–36). IEEE.

  4. Kaur, J., & Kaur, A. (2015). A review on analysis of EEG signals. In 2015 International Conference on Advances in Computer Engineering and Applications, (pp. 957–960). IEEE.

  5. Rafiee, J., Rafiee, M. A., Yavari, F., & Schoen, M. P. (2011). Feature extraction of forearm EMG signals for prosthetics. Expert System Applications, 38(4), 4058–4067.

    Article  Google Scholar 

  6. Xi, X., Ma, C., Yuan, C., Miran, S. M., Hua, X., Zhao, Y.-B., et al. (2020). Enhanced EEG-EMG coherence analysis based on hand movements. Biomedical Signal Processing and Control, 56, 101727.

    Article  Google Scholar 

  7. Karuna, M., & Guntur, S. R. (2020). EMG signal analysis using intrinsic mode functions to discriminate upper limb movements. In 2020 International Conference on Artificial Intelligence and Signal Processing (AISP) (pp. 1–3). IEEE.

  8. Tuncer, T., Dogan, S., & Subasi, A. (2020). Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition. Biomedical Signal Processing and Control, 58, 101872.

    Article  Google Scholar 

  9. Arozi, M., Putri, E. T., Ariyanto, M., Caesarendra, W., Widyotriatmo, A., & Setiawan, J. D. (2016). Electromyography (EMG) signal recognition using combined discrete wavelet transform based on artificial neural network (ANN). In 2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE) (pp. 95–99). IEEE (2016).

  10. Duan, F., Dai, L., Chang, W., Chen, Z., Zhu, C., & Li, W. (2015). sEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform. IEEE Transactions on Industrial Electronics, 63(3), 1923–1934.

    Article  Google Scholar 

  11. Subasi, A., & Yaman, E. (2019). EMG signal classification using discrete wavelet transform and rotation forest. In International Conference on Medical and Biological Engineering (pp. 29–35). Cham: Springer.

  12. Chen, H., Zhang, Y., Li, G., Fang, Y., & Liu, H. (2020). Surface electromyography feature extraction via convolutional neural network. International Journal of Machine Learning and Cybernetics, 11(1), 185–196.

    Article  Google Scholar 

  13. Subasi, A., & Qaisar, S. M. (2020). Surface EMG signal classification using TQWT, Bagging and Boosting for hand movement recognition. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01980-6.

  14. Fikri, R. M., & Hwang, M. (2019). Smart parking area management system for the disabled using IoT and mobile application. In 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS) (pp. 172–176). IEEE.

  15. Papoulis, A. (1977). Signal analysis (Vol. 191). New York: McGraw-Hill.

    MATH  Google Scholar 

  16. Acunzo, D. J., MacKenzie, G., & van Rossum, M. C. W. (2012). Systematic biases in early ERP and ERF components as a result of high-pass filtering. Journal of Neuroscience Methods, 209(1), 212–218.

    Article  Google Scholar 

  17. Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data-a practical approach. Journal of Neuroscience Methods, 250, 34–46.

    Article  Google Scholar 

  18. Zumbahlen, H. (2007). Basic linear design. Norwood, MA: Analog Devices.

    Google Scholar 

  19. Henzel, N., & Leski, J. M. (2014). Design of linear-phase FIR filters with time and frequency domains constraints by means of AI based method. In K. A. Cyran, et al. (Eds.), Man-machine interactions (Vol. 3, pp. 239–246). Cham: Springer.

    Chapter  Google Scholar 

  20. Rana, R., Mehra, R., Jetly, A. FPGA based high speed ECG signal diagnosis for artifacts. International Journal on Recent and Innovation Trends in Computing and Communication, 5(5), 1064–1067.

  21. Zhang, C., & Wang, A. (2012). IIR digital filter design research and simulation on MATLAB. International Proceedings of Computer Science and Information Technology, 58, 138.

    Google Scholar 

  22. Unde, S. A., & Shriram, R. (2014). Coherence analysis of EEG signal using power spectral density. In 2014 Fourth International Conference on Communication Systems and Network Technologies (pp. 871–874). IEEE.

  23. Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10–20 system electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376–382.

    Article  Google Scholar 

  24. Mahalakshmi, G., & Vigneshwaran, M. (2017). IOT based home automation using Arduino. International Journal of Research in Advanced Engineering Technologies, 3(8), 1–6.

    Google Scholar 

  25. Tibdewal, M. N., Mahadevappa, M., Ray, A. K., Malokar, M., & Dey, H. R. (2016). Power line and ocular artifact denoising from EEG using notch filter and wavelet transform. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1654–1659. IEEE.

  26. Wang, C. M., Cai Xiao, W. (2013) Second-order IIR Notch Filter Design and implementation of digital signal processing system. In Applied Mechanics and Materials, vol. 347, pp. 729-732. Trans Tech Publications Ltd.

  27. Deepa, V. B., Thangaraj, P. (2011). A study on classification of eeg data using the filters. IJACSA. https://doi.org/10.14569/IJACSA.2011.020415 (2011).

  28. Retrieved from June 21, 2018 https://www.radio-electronics.com/info/rf-technology-design/rf-filters/butterworth-rf-filter-calculations-formulae-equations.php

  29. Acharya, A., Das, S., Pan, I., & Das, S. (2014). Extending the concept of analog Butterworth filter for fractional order systems. Signal Processing, 94, 409–420.

    Article  Google Scholar 

  30. Mohiddin, M., Premalatha, M., Kedarnath, B., Kumar, K. S., & Prasad, K. V. K. (2017). Implementation of Brain-Computer Interface Technology using Arduino. International Journal of Electrical Engineering & Technology, 8(2), 25–35.

    Google Scholar 

  31. Abdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230.

    Article  Google Scholar 

  32. Pattnaik, P. K., & Sarraf, J. (2018). Brain Computer Interface issues on hand movement. Journal of King Saud University-Computer and Information Sciences, 30(1), 18–24.

    Article  Google Scholar 

  33. Rani, S., Kaur, A., & Ubhi, J. S. (2011). Comparative study of FIR and IIR filters for the removal of Baseline noises from ECG signal. International Journal of Computer Science and Information Technologies, 2(3), 1105–1108.

    Google Scholar 

  34. Mahajan, R., & Bansal, D. (2017). Real time EEG based cognitive brain computer interface for control applications via Arduino interfacing. Procedia Computer Science, 115, 812–820.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damodar Reddy Edla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurapa, A., Rathore, D., Edla, D.R. et al. A Hybrid Approach for Extracting EMG signals by Filtering EEG Data for IoT Applications for Immobile Persons. Wireless Pers Commun 114, 3081–3101 (2020). https://doi.org/10.1007/s11277-020-07518-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07518-5

Keywords

Navigation