Skip to main content

Advertisement

Log in

Hybrid Random Number Generation Architecture for Mobile Registration Controller: A Reconfigurable Hardware Realization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile phones have become one of the mostly used gadgets in the world. The number of devices being used has been increasing tremendously and the concern for signal connectivity has been growing everyday. In this work, a mobile phone location registration model has been proposed using a hybrid random number generator (HRNG). Traffic of the cellular devices during the successive location registration with base station can be managed by incorporating a HRNG which produces different delays in different mobile phones. This HRNG was designed using ring oscillator, PLL and cellular automata. The developed HRNG was utilized to create non-overlapping pulses on Cyclone II FPGA EP2C20F484C7 which depict a part of mobile registration controller hardware. The proposed scheme utilized 1616 combinational functions and 1003 registers with a total power dissipation of 69.96 mW. The HRNG was analyzed with restart, entropy and NIST randomness analyses. The capability of mobile registration architecture was analyzed with correlation and random distribution analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. https://dazeinfo.com/2017/12/05/number-5g-subscriptions-worldwide-2023/.

  2. Wiedermann, W. (2005). The future is mobile—Education meets mobile communication. In R. T. Mittermeir (Ed.), From computer literacy to informatics fundamentals (pp. 198–201). Berlin: Springer.

    Chapter  Google Scholar 

  3. The mobile communication system: elements and characteristics (2005). In Leveraging mobile media: Cross-media strategy and innovation policy for mobile media communication (pp. 53–86). Heidelberg: Physica-Verlag HD. https://doi.org/10.1007/3-7908-1633-7_3.

  4. Namiki, H., & Oomori, Y. (2004). Wireless communication terminal and registration control method thereof. European Patent Application. No. EP 1 463 362 A1. https://doi.org/10.1371/joumal.pone.0010853.

  5. Bakiri, M., Guyeux, C., Couchot, J.-F., & Oudjida, A. K. (2018). Survey on hardware implementation of random number generators on FPGA: Theory and experimental analyses. Computer Science Review, 27, 135–153. https://doi.org/10.1016/j.cosrev.2018.01.002.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, J., Jeon, M., & Kim, S. C. (2012). Using leap-ahead LFSR architecture (pp. 264–271). Berlin: Springer.

    Google Scholar 

  7. Deepthi, P. P., & Sathidevi, P. S. (2009). Design, implementation and analysis of hardware efficient stream ciphers using LFSR based hash functions. Computers and Security, 28(3–4), 229–241. https://doi.org/10.1016/j.cose.2008.11.006.

    Article  Google Scholar 

  8. Ahmad, A., & Al-Maashri, A. (2008). Investigating some special sequence lengths generated in an external exclusive-NOR type LFSR. Computers & Electrical Engineering, 34(4), 270–280. https://doi.org/10.1016/j.compeleceng.2007.09.002.

    Article  MATH  Google Scholar 

  9. Li, W., & Yang, X. (2015). A parallel and reconfigurable united architecture for Fibonacci and Galois LFSR. In 2015 7th international conference on intelligent humanmachine systems and cybernetics (Vol. 1, pp. 203–206). https://doi.org/10.1109/ihmsc.2015.265.

  10. Zhang, H., Wang, Y., Wang, B., & Wu, X. (2007). Evolutionary random sequence generators based on LFSR. Wuhan University Journal of Natural Sciences, 12(1), 75–78. https://doi.org/10.1007/s11859-006-0196-9.

    Article  Google Scholar 

  11. Gonzalez, J. D. T., & Kinsner, W. (2011). A modular dynamical cryptosystem based on continuous cellular automata. In Proceedings of the 10th IEEE international conference on cognitive informatics and cognitive computing, ICCI*CC 2011 (pp. 203–215). https://doi.org/10.1109/coginf.2011.6016142.

  12. Abdo, A. A., Lian, S., Ismail, I. A., Amin, M., & Diab, H. (2013). A cryptosystem based on elementary cellular automata. Communications in Nonlinear Science and Numerical Simulation, 18(1), 136–147. https://doi.org/10.1016/j.cnsns.2012.05.023.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bucci, M., & Luzzi, R. (2016). A fully-digital chaos-based random bit generator. In P. Y. A. Ryan, D. Naccache, & J.-J. Quisquater (Eds.), The new codebreakers: Essays dedicated to David Kahn on the occasion of his 85th birthday (pp. 396–414). Berlin: Springer. https://doi.org/10.1007/978-3-662-49301-4_25.

    Chapter  Google Scholar 

  14. Fang, X., Wang, Q., Guyeux, C., & Bahi, J. M. (2014). FPGA acceleration of a pseudorandom number generator based on chaotic iterations. Journal of Information Security and Applications, 19(1), 78–87. https://doi.org/10.1016/j.jisa.2014.02.003.

    Article  Google Scholar 

  15. Singh, N., & Sinha, A. (2010). Chaos-based secure communication system using logistic map. Optics and Lasers in Engineering, 48(3), 398–404. https://doi.org/10.1016/j.optlaseng.2009.10.001.

    Article  Google Scholar 

  16. Essaid, M., Akharraz, I., Saaidi, A., & Mouhib, A. (2018). A new image encryption scheme based on confusion–diffusion using an enhanced skew tent map. Procedia Computer Science, 127, 539–548. https://doi.org/10.1016/j.procs.2018.01.153.

    Article  Google Scholar 

  17. Belazi, A., & El-Latif, A. A. A. (2017). A simple yet efficient S-box method based on chaotic sine map. Optik: International Journal for Light and Electron Optics, 130, 1438–1444. https://doi.org/10.1016/j.ijleo.2016.11.152.

    Article  Google Scholar 

  18. Stojanovski, T., Pihl, J., & Kocarev, L. (2001). Chaos-based random number generators—Part II: Practical realization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(3), 382–385. https://doi.org/10.1109/81.915396.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lynnyk, V., Sakamoto, N., & Čelikovský, S. (2015). Pseudo random number generator based on the generalized Lorenz chaotic system. IFAC-PapersOnLine, 28(18), 257–261. https://doi.org/10.1016/j.ifacol.2015.11.046.

    Article  Google Scholar 

  20. Rajagopalan, S., Rethinam, S., Arumugham, S., Upadhyay, H. N., Rayappan, J. B. B., & Amirtharajan, R. (2018). Networked hardware assisted key image and chaotic attractors for secure RGB image communication. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-5566-0.

    Article  Google Scholar 

  21. Özkaynak, F., & Yavuz, S. (2013). Security problems for a pseudorandom sequence generator based on the Chen chaotic system. Computer Physics Communications, 184(9), 2178–2181. https://doi.org/10.1016/j.cpc.2013.04.014.

    Article  MATH  Google Scholar 

  22. Jun, B., & Kocher, P. (1999). The Intel random number generator. Cryptography Research Inc. white paper, 27 (July 1948) (pp. 1–8). Retrieved from http://kemt-old.fei.tuke.sk/Predmety/KEMT414_AK/_materialy/Info/RND_Generatory/IntelRNG.pdf.

  23. Dollfus, P., Bournel, A., Galdin-Retailleau, S., & Velázquez, J. E. (2006). Thermal noise in nanometric DG-MOSFET. Journal of Computational Electronics, 5(4), 479–482. https://doi.org/10.1007/s10825-006-0034-5.

    Article  Google Scholar 

  24. Tani, M., Yamamoto, K., Estacio, E. S., Que, C. T., Nakajima, H., Hibi, M., et al. (2012). Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. Journal of Infrared, Millimeter, and Terahertz Waves, 33(4), 393–404. https://doi.org/10.1007/s10762-012-9882-1.

    Article  Google Scholar 

  25. Bagini, V., & Bucci, M. (1999). A design of reliable true random number generator for cryptographic applications. Cryptographic Hardware and Embedded Systems (CHES). https://doi.org/10.1007/3-540-48059-5_18.

    Article  MATH  Google Scholar 

  26. Nikolic, S., & Veinovic, M. (2016). Advancement of true random number generators based on sound cards through utilization of a new post-processing method. Wireless Personal Communications, 91(2), 603–622. https://doi.org/10.1007/s11277-016-3480-9.

    Article  Google Scholar 

  27. Deak, N., Gyorfi, T., Marton, K., Vacariu, L., & Cret, O. (2015). Highly efficient true random number generator in FPGA devices using phase-locked loops. In 2015 20th international conference on control systems and computer science (pp. 453–458). https://doi.org/10.1109/cscs.2015.19.

  28. Johnson, A. P., Chakraborty, R. S., & Mukhopadhyay, D. (2016). An improved DCM-based tunable true random number generator for Xilinx FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs, 7747, 1. https://doi.org/10.1109/tcsii.2016.2566262.

    Article  Google Scholar 

  29. Danger, J. L., Guilley, S., & Hoogvorst, P. (2009). High speed true random number generator based on open loop structures in FPGAs. Microelectronics Journal, 40(11), 1650–1656. https://doi.org/10.1016/j.mejo.2009.02.004.

    Article  Google Scholar 

  30. Chen, W., Che, W., Yan, N., Tan, X., & Min, H. (2011). Ultra-low power truly random number generator for RFID tag. Wireless Personal Communications, 59(1), 85–94. https://doi.org/10.1007/s11277-010-0191-5.

    Article  Google Scholar 

  31. Sunar, B., Martin, W. J., & Stinson, D. R. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers, 56(1), 109–119. https://doi.org/10.1109/TC.2007.250627.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazumichi, H., & Koki, A. (2011). Performance enhancement of the ring oscillator type true random number generator on FPGA. IEICE Technical Report, 2011 (19), 1–6 (Japanese).

  33. Wieczorek, P. Z. (2013). Dual-metastability FPGA-based true random number generator. Electronics Letters, 49(12), 744–745. https://doi.org/10.1049/el.2012.4126.

    Article  Google Scholar 

  34. Güneysu, T., & Paar, C. (2009). Transforming write collisions in block RAMs into security applications. In Proceedings of the 2009 international conference on field-programmable technology, FPT’09 (pp. 128–134). https://doi.org/10.1109/fpt.2009.5377631.

  35. Epstein, M., Hars, L., Krasinski, R., Rosner, M., & Zheng, H. (2003). Design and implementation of a true random number generator based on digital circuit artifacts. In C. D. Walter, et al. (Eds.), Cryptographic hardware and embedded systems (pp. 152–165). Berlin: Springer.

    Google Scholar 

  36. Dichtl, M., & Golić, J. D. (2007). High-speed true random number generation with logic gates only. In P. Paillier & I. Verbauwhede (Eds.), Cryptographic hardware and embedded systems—CHES 2007 (pp. 45–62). Berlin: Springer.

    Chapter  Google Scholar 

  37. Park, M., Rodgers, J. C., & Lathrop, D. P. (2015). True random number generation using CMOS Boolean chaotic oscillator. Microelectronics Journal, 46(12, Part A), 1364–1370. https://doi.org/10.1016/j.mejo.2015.09.015.

    Article  Google Scholar 

  38. Jessa, M., & Matuszewski, L. (2011). Enhancing the randomness of a combined true random number generator based on the ring oscillator sampling method. In 2011 international conference on reconfigurable computing and FPGAs (pp. 274–279). doi:10.1109/ReConFig.2011.35.

  39. Kohlbrenner, P., & Gaj, K. (2004). An embedded true random number generator for FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on field programmable gate arrays (pp. 71–78). New York, NY: ACM. https://doi.org/10.1145/968280.968292.

  40. Valtchanov, B., Fischer, V., & Aubert, A. (2009). Enhanced TRNG based on the coherent sampling. In 3rd international conference on signals, circuits and systems, SCS 2009 (pp. 1–6). https://doi.org/10.1109/icscs.2009.5412601.

  41. Goettfert, R., & Rueping, S. (2009). Hybrid random number generator. US Patent Application. No. US 2009/0204657 A1.

  42. Erdinc, A., Tuncer, T., Ozer, B. A., & Turk, M. (2014). A new method for hybrid pseudo random number generator. Journal of Microelectronics, Electronic Components and Materials, 44(4), 303–311.

    Google Scholar 

  43. Avaroğlu, E., Koyuncu, İ., Özer, A. B., & Türk, M. (2015). Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dynamics, 82(1–2), 239–248. https://doi.org/10.1007/s11071-015-2152-8.

    Article  MathSciNet  Google Scholar 

  44. Tuncer, T. V. C. (2013). Hybrid PRNG based on logistic map. In IEEE conference (Vol. 1, pp. 3–6) (Japanese).

  45. Thamrin, N. M., Witjaksono, G., Nuruddin, A., & Abdullah, M. S. (2009). An enhanced hardware-based hybrid random number generator for cryptosystem. In Proceedings2009 international conference on information management and engineering, ICIME 2009 (pp. 152–156). https://doi.org/10.1109/icime.2009.115.

  46. Ning, L., Ding, J., Chuang, B., & Xuecheng, Z. (2015). Design and validation of high speed true random number generators based on prime-length ring oscillators. Journal of China Universities of Posts and Telecommunications, 22(4), 1–6. https://doi.org/10.1016/S1005-8885(15)60661-6.

    Article  Google Scholar 

  47. Hoe, D. H. K., Comer, J. M., Cerda, J. C., Martinez, C. D., & Shirvaikar, M. V. (2012). Cellular automata-based parallel random number generators using FPGAs. International Journal of Reconfigurable Computing. https://doi.org/10.1155/2012/219028.

    Article  Google Scholar 

  48. Tomassini, M., & Perrenoud, M. (2001). Cryptography with cellular automata. Applied Soft Computing, 1(2), 151–160. https://doi.org/10.1016/S1568-4946(01)00015-1.

    Article  MATH  Google Scholar 

  49. Martin, H., Peris-Lopez, P., Tapiador, J. E., & San Millan, E. (2016). A new TRNG based on coherent sampling with self-timed rings. IEEE Transactions on Industrial Informatics, 12(1), 91–100. https://doi.org/10.1109/TII.2015.2502183.

    Article  Google Scholar 

  50. Bassham, L. E., Rukhin, A. L., Soto, J., Nechvatal, J. R., Smid, M. E., Barker, E. B., & Vo, S. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications. Natl. Inst. Stand. Technol., Gaithersburg, MD, USA, Tech. Rep. (April). https://doi.org/10.6028/nist.sp.800-22r1a.

Download references

Acknowledgements

The authors wish to thank SASTRA Deemed University for providing infrastructure through the Research & Modernization Fund (Ref. No.: R&M/0026/SEEE-010/2012-13) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundararaman Rajagopalan.

Ethics declarations

Conflict of interest

The authors of the paper do not have a direct financial relation with the commercial identity mentioned in this paper that might lead to a conflict of interests for any of the authors and declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rethinam, S., Rajagopalan, S., Rayappan, J.B.B. et al. Hybrid Random Number Generation Architecture for Mobile Registration Controller: A Reconfigurable Hardware Realization. Wireless Pers Commun 115, 239–266 (2020). https://doi.org/10.1007/s11277-020-07569-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07569-8

Keywords