Skip to main content
Log in

Cooperative Spectrum Sensing with Distributed/Centralized Relay Selection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we suggest a new Cooperative Spectrum Sensing (CSS) algorithm using Distributed Relay Selection. Spectrum sensing is performed at Fusion Node (FN) using only the signal from Primary User (PU) when its Signal to Noise Ration (SNR) is larger than threshold \(\gamma _{th}\). If SNR of the link between PU and FN is lower than \(\gamma _{th}\), a relay is activated using distributed relay selection. All relays compare their SNRs to threshold \(\alpha\) and transmit only if the SNR exceeds \(\alpha\). If the SNR of all relays are less than \(\alpha\), there is an outage event, no relay is selected and only the signal from PU will be used for spectrum sensing. If SNRs of more relays than two relays are larger than \(\alpha\), a collision occurs and spectrum sensing uses only the signal from PU. Threshold \(\alpha\) is optimized using the Gradient algorithm to yield the largest detection probability. We also compare our results to spectrum sensing with centralized relay selection using opportunistic Amplify and Forward (OAF) or Partial Relay Selection (PRS). In OAF, the end-to-end SNR between PU, relays and FN are sent to the FN to be compared and the relay with largest SNR is activated. In PRS, the SNR at the relays are sent to the FN in order to be compared. Then, the relay with largest SNR of first hop, between PU and relays, is activated. CSS with distributed relay selection is novel and no yet studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FCC, ”Spectrum policy task force,” Technical Report, (2002)

  2. Haykin, S. (2005). ’Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.

    Article  Google Scholar 

  3. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  4. Bhargavi, D., & Murthy, C. R. (2010) Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. SPAWC.

  5. Man, L., Li, Y., & Demir, A. (2012) Matched filtering assisted energy detection for sensing weak primary user signals. ICASSP.

  6. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4, 40–62.

    Article  Google Scholar 

  7. Visotsky, E., Kuffner, S., & Peterson, R. (2005). On collaborative detection of tv transmissions in support of dynamic spectrum sharing. In Proceedings of IEEE DySPAN (pp. 338–245).

  8. Ghasemi, A., & Sousa, E. (2005) Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of IEEE DySPAN (pp. 131–136).

  9. Unnikrishnan, J., & Veeravalli, V. V. (2008). Cooperative sensing for primary detection in cognitive radio. IEEE Journal on Selected Topics in Signal Processing 18–27.

  10. Li, Z., Yu, F., & Huang, M. (2009). A cooperative spectrum sensing consensus scheme in cognitive radio. In Proceedings of INFOCOM (pp. 2546–2550).

  11. Ganesa, G., & Li, Y. G. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communication, 6, 2204–2213.

    Article  Google Scholar 

  12. Verma, P. (2020). Weighted fusion scheme for cooperative spectrum sensing. In 2020 International conference on industry 4.0 technology (I4Tech).

  13. Salama, G. M., & Taha, S. A. (2020). Cooperative spectrum sensing and hard decision rules for cognitive radio network. In 2020 3rd international conference on computer applications and information security (ICCAIS).

  14. Srisomboon, K., Sroulsrun, Y., & Lee, W., (2020). Adaptive majority rule in cooperative spectrum sensing for Ad hoc network. In 2020 8th International electrical engineering congress (iEECON).

  15. Khayyeri, M., & Mohammadi, K. (2020). Cooperative wideband spectrum sensing in cognitive radio based on sparse real-valued fast Fourier transform. IET Communications.

  16. Shachi, P., Sudhindra, K. R., & Suma, M. N. (2020). Convolutional neural network for cooperative spectrum sensing with spatio-temporal dataset. In 2020 International conference on artificial intelligence and signal processing (AISP).

  17. Shi, Z., Gao, W., Zhang, S., Liu, J., & Kato, N. (2020). Machine learning-enabled cooperative spectrum sensing for non-orthogonal multiple access. IEEE Transactions on Wireless Communications.

  18. Atapattu, S., Tellambura, C., & Jiang, H. (2009). Relay based cooperative spectrum sensing in cognitive radio networks. GLOBECOM.

  19. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 4(10), 1232–1241.

    Article  Google Scholar 

  20. Nuttall, A. H. (1974). Some integrals involving the QM function. Naval Underwater systems Center (NUSC), technical report.

  21. Hasna, M., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

  22. Boujemaa, H. (2010). Exact symbol error probability of cooperative systems with partial relay selection. European Transactions on Telecommunications, 21, 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

When the SNR at \(R_k\) is greater than \(\alpha\) and SNRs of all other relay nodes are less than \(\alpha\), the SNR at FN is given by [21]

$$\begin{aligned} \Gamma _k=\frac{\Gamma _{max}\Gamma _{R_kFN}}{\Gamma _{max}+\Gamma _{R_kFN}+1} \end{aligned}$$
(37)

where \(\Gamma _{max}=max\{\Gamma _{PUR_p}\}\).

We deduce [21]

$$\begin{aligned} \Gamma _k<\Gamma _k^{up}=min(\Gamma _{max},\Gamma _{R_kFN}) \end{aligned}$$
(38)

The CDF of SNR is given by

$$\begin{aligned} P_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x)>P_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=1-P(min(\Gamma _{max},\Gamma _{R_kFN})>x|\Gamma _{PUR_k}>\alpha ) \end{aligned}$$
(39)

If \(\Gamma _{max}\) and \(|\Gamma _{PUR_k}\) are independent we have

$$\begin{aligned} P_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x)>P_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=1-P(\Gamma _{max}>x|\Gamma _{PUR_k}>\alpha )P(\Gamma _{R_kFN}>x) \end{aligned}$$
(40)

If \(x<\alpha\), \(P(\Gamma _{max}>x|\Gamma _{PUR_k}>\alpha )=1\), and we can write

$$\begin{aligned} P_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x)>P_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=1-e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}, x<\alpha \end{aligned}$$
(41)

If \(x>\alpha\), we have

$$\begin{aligned}&P_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x)>P_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=1-[1-P(\Gamma _{max}<x|\Gamma _{PUR_k}>\alpha )]P(\Gamma _{R_kFN}>x)\nonumber \\&\quad =1-\left[ 1-P(\Gamma _{PUR_k}<x|\Gamma _{PUR_k}>\alpha )\prod _{p=1, p \ne k}^K P(\Gamma _{PUR_p}<x)\right] e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}} \end{aligned}$$
(42)

We have

$$\begin{aligned} P(\Gamma _{PUR_k}<x|\Gamma _{PUR_k}>\alpha )=\int _\alpha ^x \frac{e^{-\frac{(u-\alpha )}{\overline{\Gamma }_{PUR_k}}}}{\overline{\Gamma }_{PUR_k}}du=1-e^{-\frac{(x-\alpha )}{\overline{\Gamma }_{PUR_k}}} \end{aligned}$$
(43)

We denote by \(\{i(p)\}_{p=1}^{K-1}=(1,2,\ldots ,k-1,k+1,\ldots ,K)\) to write

$$\begin{aligned} \prod _{p=1, p \ne k}^K P(\Gamma _{PUR_k}<x)=\prod _{p=1}^{K-1} \left( 1-e^{-\frac{x}{\overline{\Gamma }_{PUR_i(p)}}}\right) =\sum _{n=0}^{2^{K-1}} (-1)^{a(n)}e^{-x\sum _{k=1}^{K-1}\frac{b_n(p)}{\overline{\Gamma }_{PUR_i(p)}}} \end{aligned}$$
(44)

where \((b_n(1),b_n(2),\ldots ,b_n(K-1))\) is the binary representation of n and

$$\begin{aligned} a(n)=\sum _{p=1}^{K-1}b_n(p). \end{aligned}$$
(45)

Using (41), (42), (43) and (44), we obtain

$$\begin{aligned} P_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=\left\{ \begin{array}{l} 1-e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}},\quad x \le \alpha \\ 1-e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}+\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}e^{-\frac{x}{c_k(n)}}\\ -e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}e^{-\frac{x}{d_k(n)}},\quad x >\alpha \end{array} \right. \end{aligned}$$
(46)

where

$$\begin{aligned} \frac{1}{c_k(n)}= & {} \frac{1}{\overline{\Gamma }_{R_kFN}}+\sum _{p=1}^{K-1}\frac{b_n(p)}{\overline{\Gamma }_{PUR_{i(p)}}} \end{aligned}$$
(47)
$$\begin{aligned} \frac{1}{d_k(n)}= & {} \frac{1}{\overline{\Gamma }_{R_kFN}}+\frac{1}{\overline{\Gamma }_{PUR_k}}+\sum _{p=1}^{K-1}\frac{b_n(p)}{\overline{\Gamma }_{PUR_{i(p)}}} \end{aligned}$$
(48)

By a derivative, we obtain the PDF of SNR

$$\begin{aligned} p_{\Gamma _k^{up}|\Gamma _{PUR_k}>\alpha }(x)=\left\{ \begin{array}{l} \frac{1}{\overline{\Gamma }_{R_kFN}}e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}=p_1(x),\quad x \le \alpha \\ \frac{1}{\overline{\Gamma }_{R_kFN}}e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}-\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{1}{c_k(n)}e^{-\frac{x}{c_k(n)}}\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{1}{d_k(n)}e^{-\frac{x}{d_k(n)}}=p_2(x),\quad x >\alpha \end{array} \right. \end{aligned}$$
(49)

Appendix B

Let \(Y_k=\Gamma _k+\Gamma _{PUFN}|\Gamma _k>\alpha , \Gamma _{PUFN}<\gamma _{th}\) where \(\Gamma _k\) is the SNR of PU-\(R_k\)-FN link. The PDF of \(Y_k\) is written as

$$\begin{aligned}p_{Y_k}(x) &=\int _0^{min(\gamma _{th},x)}p_{\Gamma _{PUFN}|\Gamma _{PUFN}<\gamma _{th}}(u)p_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x-u)du\nonumber \\&=\int _0^{min(\gamma _{th},x)}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k|\Gamma _{PUR_k}>\alpha }(x-u)du \end{aligned}$$
(50)

The PDF of an upper bound of \(\Gamma _k\), \(\Gamma _k^{up}\), is given in “Appendix A”.

From “Appendix A”, we can compute the PDF of \(Y_k^{up}=\Gamma _k^{up}+\Gamma _{PUFN}|\Gamma _{PUR_k}>\alpha , \Gamma _{PUFN}<\gamma _{th}\).

Case 1: \(\alpha <\gamma _{th}\)

  • If \(0\le x\le \alpha <\gamma _{th}\), from (50), (50) is expressed as

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{1}(x-u)du \end{aligned}$$
    (51)

    where \(p_1(x)\) is defined in (49).

  • If \(\alpha \le x\le \gamma _{th}\), we have

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du+\int _{x-\alpha }^{x}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du \end{aligned}$$
    (52)

    The first integral is written as

    $$\begin{aligned} \int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{T}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_2(x-u)du. \end{aligned}$$

    The second integral is written as

    $$\begin{aligned} \int _{x-\alpha }^x\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du=\int _{x-\alpha }^x\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_1(x-u)du. \end{aligned}$$

    We deduce

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_2(x-u)du+\int _{x-\alpha }^x\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_1(x-u)du. \end{aligned}$$
    (53)
  • If \(\gamma _{th}\le x \le \gamma _{th}+\alpha\), we have

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du+\int _{x-\alpha }^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du \end{aligned}$$
    (54)

    The first integral is equal to

    $$\begin{aligned} \int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_2(x-u)du. \end{aligned}$$

    The second integral is equal to

    $$\begin{aligned} \int _{x-\alpha }^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{\Gamma _k^{up}}(x-u)du=\int _{x-\alpha }^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_1(x-u)du. \end{aligned}$$

    Therefore, we have

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{2}(x-u)du+\int _{x-\alpha }^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{1}(x-u)du \end{aligned}$$
    (55)
  • If \(x\ge \alpha +\gamma _{th}\), in (50), we have

$$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{2}(x-u)du \end{aligned}$$
(56)

Using the expressions of \(p_1(x)\) and \(p_2(x)\) in (49), we obtain

$$\begin{aligned} p_{Y_k^{up}}(x)=\left\{ \begin{array}{l} \frac{e^{-\frac{x}{\overline{\Gamma }_{PUFN}}}-e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN}\right) },\quad x \le \alpha \\ \frac{\left[ e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{\overline{\Gamma }_{R_kFN}}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN}\right) }\\ \quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{\left[ e^{\alpha \left( \frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{c_k(n)}\right) }e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{c_k(n)}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_k(n)\right) }\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{\left[ e^{\alpha (\frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{d_k(n)})}e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{d_k(n)}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_k(n)\right) } ,\quad \alpha<x \le \gamma _{th}\\ \frac{e^{\frac{-x}{\overline{\Gamma }_{R_kFN}}}\left( e^{\gamma _{th}\left( \frac{1}{\overline{\Gamma }_{R_kFN}}-\frac{1}{\overline{\Gamma }_{PUFN}}\right) }-1\right) }{(\overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN})\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) }\\ \quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{\left[ e^{\alpha (\frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{c_k(n)})}e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{c_k(n)}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_k(n)\right) }\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{\left[ e^{\alpha \left( \frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{d_k(n)}\right) }e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{d_k(n)}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_k(n)\right) },\quad \gamma _{th}<x\le \gamma _{th}+\alpha \\ \frac{e^{\frac{-x}{\overline{\Gamma }_{R_kFN}}}\left[ e^{\gamma _{th}(\frac{1}{\overline{\Gamma }_{R_kFN}}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN}\right) }\\ \quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\frac{-x}{c_k(n)}}\left[ e^{\gamma _{th}(\frac{1}{c_k(n)}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_k(n)\right) }\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\frac{-x}{d_k(n)}}\left[ e^{\gamma _{th}(\frac{1}{d_k(n)}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_k(n)\right) },\quad x>\alpha +\gamma _{th} \end{array} \right. \end{aligned}$$
(57)

We deduce the DP when \(R_k\) is active

$$\begin{aligned}&P_{dk}=\frac{\left[ \overline{\Gamma }_{PUFN}f(2,N,\overline{\Gamma } _{PUFN},\gamma _{th})-\overline{\Gamma }_{R_{k}FN}f(2,N,\overline{\Gamma }_{R_{k}FN},\gamma _{th}) \right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-\overline{\Gamma }_{R_{k}FN}\right) }\nonumber \\&\quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}e^{\alpha (\frac{1}{\overline{\Gamma } _{PUFN}}-\frac{1}{c_{k}(n)})}\overline{\Gamma }_{PUFN}\frac{\left[ g(2,N, \overline{\Gamma }_{PUFN},\alpha )-g(2,N,\overline{\Gamma }_{PUFN},\gamma _{th}+\alpha ) \right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}c_{k}(n)\frac{\left[ g(2,N,c_{k}(n),\alpha )-g(2,N,c_{k}(n),\gamma _{th}+\alpha )\right] }{\left( 1-e^{-\frac{T}{\overline{\Gamma }_{PUFN} }}\right) \left( \overline{\Gamma }_{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}e^{\alpha (\frac{1}{\overline{\Gamma } _{PUR_{k}}}+\frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{d_{k}(n)})} \overline{\Gamma }_{PUFN}\frac{\left[ g(2,N,\overline{\Gamma }_{PUFN},\alpha )-g(2,N,\overline{\Gamma }_{PUFN},\gamma _{th}+\alpha )\right] }{\left( 1-e^{-\frac{\gamma _{th}}{ \overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_{k}(n)\right) }\nonumber \\&\quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}e^{\frac{\alpha }{\overline{\Gamma } _{PUR_{k}}}}d_{k}(n)\frac{\left[ g(2,N,d_{k}(n),\alpha )-g(2,N,d_{k}(n),\gamma _{th}+\alpha )\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN} }}\right) \left( \overline{\Gamma }_{PUFN}-d_{k}(n)\right) }\nonumber \\&\quad +\,\frac{(e^{\gamma _{th}(\frac{1}{\overline{\Gamma }_{R_{k}FN}}-\frac{1}{\overline{ \Gamma }_{PUFN}})}-1)\overline{\Gamma }_{R_{k}FN}g(2,N,\overline{\Gamma } _{R_{k}FN},\gamma _{th})}{\left( 1-e^{-\frac{T}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_{k}FN}\right) }\nonumber \\&\quad -\,\sum _{n=0}^{2^{K-1}-1}\frac{(-1)^{a(n)}[e^{\gamma _{th}\left( \frac{1}{c_{k}(n)}-\frac{ 1}{\overline{\Gamma }_{PUFN}}\right) }-1]c_{k}(n)g(2,N,c_{k}(n),\gamma _{th}+\alpha )}{ \left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_{k}}}}\sum _{n=0}^{2^{K-1}-1}\frac{ (-1)^{a(n)}[e^{\gamma _{th}\left( \frac{1}{d_{k}(n)}-\frac{1}{\overline{\Gamma }_{PUFN}} \right) }-1]d_{k}(n)g(2,N,d_{k}(n),\gamma _{th}+\alpha )}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{ \Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_{k}(n)\right) } \end{aligned}$$
(58)

Case 2: \(\alpha \ge \gamma _{th}\)

  • If \(x\le \gamma _{th} \le \alpha\), (50) becomes

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{1}(x-u)du. \end{aligned}$$
    (59)
  • If \(\gamma _{th}\le x\le \alpha\), we have

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{T}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{1}(x-u)du. \end{aligned}$$
    (60)
  • If \(\alpha \le x \le \gamma _{th}+\alpha\), we have

    $$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{x-\alpha }\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{2}(x-u)du+\int _{x-\alpha }^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{1}(x-u)du. \end{aligned}$$
    (61)
  • If \(x\ge \gamma _{th}+\alpha\), (50) becomes

$$\begin{aligned} p_{Y_k^{up}}(x)=\int _0^{\gamma _{th}}\frac{e^{-\frac{u}{\overline{\Gamma }_{PUFN}}}}{\left( 1-e^{-\frac{T}{\overline{\Gamma }_{PUFN}}}\right) \overline{\Gamma }_{PUFN}}p_{2}(x-u)du. \end{aligned}$$
(62)

Using the expressions of \(p_1(x)\) and \(p_2(x)\) in (49), we obtain

$$\begin{aligned} p_{Y_k^{up}}(x)=\left\{ \begin{array}{l} \frac{e^{-\frac{x}{\overline{\Gamma }_{PUFN}}}-e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN}\right) },\quad x \le \gamma _{th}\\ \frac{e^{-\frac{x}{\overline{\Gamma }_{R_kFN}}}(e^{\gamma _{th}(\frac{1}{\overline{\Gamma }_{R_kFN}}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1)}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN}\right) }, \gamma _{th}<x\le \alpha \\ \frac{e^{\frac{-x}{\overline{\Gamma }_{R_kFN}}}\left[ e^{\gamma _{th}(\frac{1}{\overline{\Gamma }_{R_kFN}}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{(\overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_kFN})\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) }\\ \quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{[e^{\alpha \left( \frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{c_k(n)}\right) }e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{c_k(n)}}]}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_k(n)\right) }\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{\left[ e^{\alpha \left( \frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{d_k(n)}\right) }e^{\frac{-x}{\overline{\Gamma }_{PUFN}}}-e^{\frac{-x}{d_k(n)}}\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_k(n)\right) } ,\quad \alpha <x\le \gamma _{th}+\alpha \\ \frac{e^{\frac{-x}{\overline{\Gamma }_{R_kFN}}}\left[ e^{\gamma _{th}(\frac{1}{\overline{\Gamma }_{R_kFN}}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }{R_kFN}\right) }\\ \quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\frac{-x}{c_k(n)}}\left[ e^{\gamma _{th}(\frac{1}{c_k(n)}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_k(n)\right) }\\ \quad +\,e^{\frac{\alpha }{\overline{\Gamma }_{PUR_k}}}\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\frac{-x}{d_k(n)}}[e^{\gamma _{th}(\frac{1}{d_k(n)}-\frac{1}{\overline{\Gamma }_{PUFN}})}-1]}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_k(n)\right) } ,\quad x>\alpha +\gamma _{th} \end{array} \right. \end{aligned}$$
(63)

When \(R_k\) amplifies the PU signal to FN, the DP is written as

$$\begin{aligned}&P_{dk}=\frac{\left[ \overline{\Gamma }_{PUFN}f(2,N,\overline{\Gamma } _{PUFN},\gamma _{th})-\overline{\Gamma }_{R_{k}FN}f(2,N,\overline{\Gamma }_{R_{k}FN},\gamma _{th}) \right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-\overline{\Gamma }_{R_{k}FN}\right) }\nonumber \\&\quad +\,\frac{\left( e^{T(\frac{1}{\overline{\Gamma }_{R_{k}FN}}-\frac{1}{\overline{ \Gamma }_{PUFN}})}-1\right) \overline{\Gamma }_{R_{k}FN}g(2,N,\overline{ \Gamma }_{R_{k}FN},\gamma _{th})}{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-\overline{\Gamma }_{R_{k}FN}\right) }\nonumber \\&\quad -\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\alpha \left( \frac{1}{\overline{ \Gamma }_{PUFN}}-\frac{1}{c_{k}(n)}\right) }\overline{\Gamma }_{PUFN}\left[ g(2,N,\overline{\Gamma }_{PUFN},\alpha )-g(2,N,\overline{\Gamma } _{PUFN},\alpha +\gamma _{th})\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\,\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{c_{k}(n)\left[ g(2,N,c_{k}(n),\alpha )-g(2,N,c_{k}(n),\alpha +\gamma _{th})\right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN} }}\right) \left( \overline{\Gamma }_{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\alpha \left( \frac{1}{\overline{ \Gamma }_{PUR_{k}}}+\frac{1}{\overline{\Gamma }_{PUFN}}-\frac{1}{d_{k}(n)} \right) }\overline{\Gamma }_{PUFN}\left[ g(2,N,\overline{\Gamma } _{PUFN},\alpha )-g(2,N,\overline{\Gamma }_{PUFN},\alpha +\gamma _{th})\right] }{\left( 1-e^{- \frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma }_{PUFN}-d_{k}(n)\right) }\nonumber \\&\quad -\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{e^{\frac{\alpha }{\overline{\Gamma } _{PUR_{k}}}}d_{k}(n)\left[ g(2,N,d_{k}(n),\alpha )-g(2,N,d_{k}(n),\alpha +\gamma _{th}) \right] }{\left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-d_{k}(n)\right) }\nonumber \\&\quad -\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{[e^{T\left( \frac{1}{c_{k}(n)}-\frac{ 1}{\overline{\Gamma }_{PUFN}}\right) }-1]c_{k}(n)g(2,N,c_{k}(n),\alpha +\gamma _{th})}{ \left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-c_{k}(n)\right) }\nonumber \\&\quad +\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{[e^{\gamma _{th}\left( \frac{1}{d_{k}(n)}-\frac{ 1}{\overline{\Gamma }_{PUFN}}\right) }-1]d_{k}(n)g(2,N,d_{k}(n),\alpha +\gamma _{th})}{ \left( 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}}\right) \left( \overline{\Gamma } _{PUFN}-d_{k}(n)\right) } \end{aligned}$$
(64)

The DP in (64) is the same as (58).

Appendix C

PDF of \(U^{up}=\Gamma _{PUFN}+\Gamma _{PUR_{sel}FN}^{up}|\Gamma _{PUFN}<\gamma _{th}\).

$$\begin{aligned} p_{U^{up}}(z)=\int _{0}^{min(\gamma _{th},z) }p_{\Gamma _{PUFN}|\Gamma _{PUFN}<\gamma _{th} }(x)p_{\Gamma _{PUR_{sel}FN}^{up}}(z-x)dx \end{aligned}$$
(65)

If \(z<\gamma _{th} ,\)(19) gives

$$\begin{aligned} p_{U^{up}}(z)= & {} \sum _{1\le k \le K }\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{a _{k,n}}{\overline{\Gamma }^{up}_{PUR_kFN}}\int _{0}^{z}\frac{e^{-\frac{x}{\overline{\Gamma }_{PUFN}}}}{ \overline{\Gamma }_{PUFN}\left[ 1-e^{-\frac{\gamma _{th} }{\overline{\Gamma }_{PUFN}}} \right] }\frac{e^{-\frac{\left( z-x\right) }{a_{k,n}}} }{a_{k,n}}dx \nonumber \\= & {} \sum _{1\le k \le K }\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{a _{k,n}}{\overline{\Gamma }^{up}_{PUR_kFN}}\frac{(e^{-\frac{z}{\overline{\Gamma }_{PUFN}}}-e^{-\frac{z}{a_{k,n}}})}{\left( \overline{\Gamma }_{PUFN}-a_{k,n}\right) \left[ 1-e^{-\frac{\gamma _{th} }{\overline{\Gamma }_{PUFN}}} \right] } \end{aligned}$$
(66)

If \(z>\gamma _{th}\), (19) gives

$$\begin{aligned} p_{U^{up}}(z)= & {} \sum _{1\le k \le K }\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{a _{k,n}}{\overline{\Gamma }^{up}_{PUR_kFN}}\int _{0}^{\gamma _{th} }\frac{e^{-\frac{x}{\overline{\Gamma }_{PUFN}}}}{ \overline{\Gamma }_{PUFN}\left[ 1-e^{-\frac{\gamma _{th}}{\overline{\Gamma }_{PUFN}}} \right] }\frac{e^{-\frac{\left( z-x\right) }{a_{k,n}}} }{a_{k,n}}dx \nonumber \\= & {} \sum _{1\le k \le K }\sum _{n=0}^{2^{K-1}-1}(-1)^{a(n)}\frac{a _{k,n}}{\overline{\Gamma }^{up}_{PUR_kFN}}\frac{e^{-\frac{z}{a_{k,n}}}\left[ e^{\gamma _{th} \left( \frac{1}{a_{k,n}}-\frac{1}{\overline{\Gamma }_{PUFN}} \right) }-1\right] }{\left( \overline{\Gamma }_{PUFN}-a _{k,n}\right) \left[ 1-e^{-\frac{\gamma _{th} }{\overline{\Gamma }_{PUFN}}} \right] } \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Halima, N., Boujemaa, H. Cooperative Spectrum Sensing with Distributed/Centralized Relay Selection. Wireless Pers Commun 115, 611–632 (2020). https://doi.org/10.1007/s11277-020-07589-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07589-4

Keywords

Navigation