Skip to main content
Log in

New Design of Multi-Band PIFA Antenna with Reduced SAR for Mobile and Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new multi-band PIFA antenna covering four frequency bands (GSM, Wifi/Bluetooth, 4G LTE and WIMAX) is presented. The proposed method in this work consists of two main phases. The first step consists in determining the electrical and radiation characteristics of the proposed antenna using HFSS simulator. The second step, the effects of this antenna on the human body is examined and the specific spatial peak absorption rate (SAR) in the human head caused by the use of mobile phone is reduced applying the adaptation technique. For this reason, experiments were carried out based on LC resonator placed between the generator and the load and put in series with the short circuit. After optimizing the values of L and C, theoretical and experimental results were compared and discussed to obtain a good compromise between some constraints: (1) simulation and measurement results are in good agreement on the return loss (RL) (= S11), (2) high bandwidth, (3) high radiation efficiency and (4) limited specific absorption rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Repacholi, M. H. (2001). Health risks from the use of mobile phones. Toxicology Letters, 10(6), 16–20.

    Google Scholar 

  2. Hossain, M. I., Faruque, M. R. I., & Islam, M. T. (2015). Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR. Progress in Biophysics and Molecular Biology, 119(2), 103–110.

    Google Scholar 

  3. Faruque, M. R. I., Husni, N. A., Islam, M. T., & Misran, N. (2014). Effects of mobile phone radiation onto human head with variation of holding cheek and tilt positions. Journal of Applied Research and Technology, 12(5), 871–876.

    Google Scholar 

  4. Matin, A.M. (2015). Wideband, multiband, and smart reconfigurable antennas for modern wireless communication. Media & Communications Books. 9781466686458. Part of the Research Essentials Collection.

  5. Asadallah, F. A., Costantine, J., & Tawk, Y. (2018). A Multiband compact reconfigurable PIFA based on nested slots. IEEE Antennas and Wireless Propagation Letters, 17(2), 331–334.

    Google Scholar 

  6. Loutridis, A., Yang, K., John, M., & Ammann, M.J. (2016). A dual band 450LTE/GSM900 PIFA for portable devices. In 2016 Loughborough antennas and propagation conference. IEEE.

  7. Zhao, K., Zhang, S., Ying, Z., Bolin, T., & He, S. (2013). SAR study of different MIMO antenna designs for LTE application in smart mobile Handsets. IEEE Transactions Antennas and Propagation, 61(6), 3270–3279.

    Google Scholar 

  8. Naser, A.A., Sayidmarie, K.H., & Aziz, J.S. (2016). Design and implementation of a PIFA antenna for multi-band LTE handset applications. In 2016 loughborough antennas and propagation conference. IEEE.

  9. Payandehjoo, K., & Abhari, R. (2013). Compact multi-band PIFAs on a semi-populated mobile handset with tunable isolation. IEEE Transactions on Antennas and Propagation, 61(9), 4814–4819.

    Google Scholar 

  10. Veeravalli, S.K., Shambavi, K., & Alex, Z.C. (2013). Design of tri band antenna for mobile handset applications.In 2013 International conference on communication and signal processing. IEEE.

  11. Sghaier, N., Latrach, L., & Gharsallah, A. (2015). Study and modelling of triple-band planar inverted-F antenna. International Journal of Applied Engineering Research., 10(24), 43960–43965.

    Google Scholar 

  12. Hossain, M. I., Faruque, M. R. I., & Islamb, M. T. (2015). Investigation of hand impact on PIFA performances and SAR in human head. Journal of Applied Research and Technology, 13, 447–453.

    Google Scholar 

  13. Domingo, P.-D. V., & Raidel, L.-P. (2016). Design of a dual-band PIFA for handset devices and it SAR evaluation. Ingeniería Investigación y Tecnología, 17(2), 169–178.

    Google Scholar 

  14. Kwak, S. I., Sim, D.-U., Kwon, J. H., & Yoon, Y. J. (2017). Design of PIFA with metamaterials for body-SAR reduction in wearable applications. IEEE Transactions on Electromagnetic Compatibility letters, 59(1), 297–300.

    Google Scholar 

  15. Elsheakh, D. M. N., Soliman, A. M., & Abdallah, E. A. (2014). Low specific absorption rate hexa-band coplanar waveguide-fed planar inverted-F antenna with independent resonant frequency control for wireless communication applications. IET Microwaves, Antennas and Propagation, 8(4), 207–216.

    Google Scholar 

  16. Varma, R., & Ghosh, J. (2019). Analysis and design of compact triple-band meandered PIFA for 2.4/5.2/5.8 GHz WLAN. IET Microwaves, Antennas and Propagation, 13(4), 505–509.

    Google Scholar 

  17. Halaoui, M., Kaabal, A., Asselman, H., Ahyoud, S., & Asselman, A. (2017). Multiband planar inverted-F antenna with independent operating bands control for mobile handset applications. International Journal of Antennas and Propagation., 8794039, 1–13.

    Google Scholar 

  18. Sghaier, N., Latrach, L., & Gharsallah, A. (2015). Analysis and optimization of a PIFA antenna radiation performance in the presence of a user. International Journal on Communications Antenna and Propagation, 5(6), 362–367.

    Google Scholar 

  19. Hossain, M. I., Mohammad, R. I. F., Islam, M. T., & Hanafi, N. H. M. (2014). Application of auxiliary antenna elements for SAR reduction in the human head. Advanced Materials Research, 974, 288–292.

    Google Scholar 

  20. Sultan, K. S., Abdullah, H. H., & Abdallah, E. A. (2014). Low Sar, simple printed compact multiband antenna for mobile and wireless communication applications. International Journal of Antennas and Propagation., 946781, 1–8.

    Google Scholar 

  21. Mellita, R.A., Chandu, D.S., & Karthikeyan, S.S. (2018). Novel approach for enhanced reduction of SAR in a mobile phone antenna using high impedance FSS. In 2018 International conference on signal processing and communications .IEEE.

  22. Maci, S., BiffiGentili, G., Piazzesi, P., & Salvador, C. (1995). Dual-band slot-loaded patch antenna. Microwaves, antennas and propagation. IEE Proceedings-Microwaves, Antennas and Propagation, 142(3), 225–232.

    Google Scholar 

  23. Ban, Y. L., Chen, J. H., Yang, S., Li, J. L. W., & Wu, Y. J. (2013). Low-profile printed octa-band LTE/WWAN mobile phone antenna using embedded parallel resonant. IEEE Transactions on Antennas and Propagation, 61(7), 3889–3894.

    Google Scholar 

  24. Mhaske, S. S., Kulkarni, G. A., & Tayade, R. L. (2012). SAR in life tissue at GSMfrequencies. International Journal of Advanced Research in Computer Science and Software Engineering, 2(4), 480–483.

    Google Scholar 

  25. Mandal, D., & Pattnaik, S. S. (2018). Quad-band wearable slot antenna with low SAR values for 1.8 GHz DCS, 2.4 GHz WLAN and 3.6/5.5 GHz WiMAX applications. Progress in Electromagnetics Research B, 81, 163–182.

    Google Scholar 

  26. Vandenbosch, G. A. E., & Vasylchenko, A. (2011). A practical guide to 3D electromagnetic software tools. In book Microstrip antennas. InTech, London

  27. Chan, K.H., Fung, L.C., Leung, S.W., & Siu, Y.M. (2006). Effect of internal patch antenna ground plane on SAR. In 2006 17th International zurich symposium on electromagnetic compatibility .IEEE.

  28. Holopainen, J., Valkonen, R., Kivekas, O., Ilvonen, J., & Vainikainen, P. (2010). Broadband equivalent circuit model for capacitive coupling element-based mobile terminal antenna. IEEE Antennas and Wireless Propagation Letters, 9, 716–719.

    Google Scholar 

  29. Rosengren, K., Kildal, P.-S., Carlsson, C., & Carlsson, J. (2001). Charaterization of antennas for mobile and wireless terminals in reverberation chambers: Improved accuracy by platform stirring. Microwave and Optical Technology Letters, 30(20), 391–397.

    Google Scholar 

  30. Ghnimi, S., Jamel, B.R.H, Harrathi, F., & Gharsallah, A. (2016). Statistical study on the effect of the use of mobile phone technology on human body health. In The 17th IEEE international conference on sciences and techniques of automatic control and computer engineering. IEEE.

  31. Hamadi, H., Ghnimi, S., Latrach, L., & Gharsallah, A. (2019). Analysis and design of a new PIFA antenna for the wireless communications applications. In The 19th IEEE mediterranean microwave symposium. IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Ghnimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hamadi, H., Ghnimi, S., Latrach, L. et al. New Design of Multi-Band PIFA Antenna with Reduced SAR for Mobile and Wireless Applications. Wireless Pers Commun 115, 1211–1226 (2020). https://doi.org/10.1007/s11277-020-07619-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07619-1

Keywords

Navigation