Skip to main content
Log in

Virtual Machine Consolidation in Cloud Computing Systems: Challenges and Future Trends

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cloud Computing Systems (CCSs) provides a computing capability through the Internet. It enables organizations or individuals to have a computing power without deploying and maintaining their own Information Technology infrastructure. As a cloud is realized on a vast scale cloud, it consumes an enormous amount of energy. Migration pattern, where several Virtual Machines (VMs) can be placed on a minimum number of active Physical Machines is called VMs Consolidation (VMC). Thus, this technique can be a practical approach for balancing electricity consumption and other QoS requirement in CCSs. Especially, VMC must meet the service quality requirements, minimization of both energy consumption and Service Level Agreement violation in CCSs. This paper presents a systematic survey of VMC in CCSs with particular attention to the VMC phases, metrics, objectives, migration patterns, optimization methods, and evaluation approaches of VMC. Our review study is presented based on the past literature with a focus on the type of hardware metrics, software metrics, objectives, algorithms, and architectures of VMC in CCSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud computings. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.

    Google Scholar 

  2. Ashraf, A., Porres, I., Naeen, H. M., Zeinali, E., & Haghighat, A. T. (2018). A stochastic process-based server consolidation approach for dynamic workloads in cloud data centers. The Journal of Supercomputing, 76(3), 1903–1930.

    Google Scholar 

  3. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., & Wan, J. (2019). Energy aware virtual machine scheduling in data centers. In Energies, MDPI.

  4. Xie, L., Chen, S., Shen, W., & Miao, H. (2018). A novel self-adaptive vm consolidation strategy using dynamic multi-thresholds in IaaS Clouds. In Future Internet, MDPI (pp. 1–18).

  5. Pahlavan, A., Momtazpour, M., & Goudarzi, M. (2014). Power reduction in HPC data centers: A joint server placement and chassis consolidation approach. The Journal of Supercomputing, 70, 845–879.

    Google Scholar 

  6. Roytman, A., Kansal, A., Govindan, S., Liu, J., & Nath, S. (2013). PACMan: Performance-aware virtual machine consolidation. In 10th international conference on autonomic computing (ICAC2013) (pp. 83–94).

  7. Ullah, A., Li, J., Shen, Y., & Hussain, A. (2018). A control theoretical view of cloud elasticity: Taxonomy, survey and challenges. Cluster Computing, 21, 1735–1764.

    Google Scholar 

  8. Witanto, J. N., Lim, H., & Atiquzzaman, M. (2018). Adaptive selection of dynamic VM consolidation algorithm using neural network for cloud resource management. In Future generation computer systems (pp. 1–20). Elsevier, New York.

  9. Casalicchio, E., Lundberg, L., & Shirinbab, S. (2017). Energy-aware auto-scaling algorithms for Cassandra virtual datacenters. Cluster Computing, 20, 2065–2082.

    Google Scholar 

  10. Md Khan, A., Paplinski, A. P., Khan, A. M., Murshed, M., & Buyya, R. (2018). Exploiting user provided information in dynamic consolidation of virtual machines to minimize energy consumption of cloud data centers. In Third international conference on fog and mobile edge computing (FMEC), IEEE.

  11. World Energy Outlook. (2013). Fact Sheet. http://goo.gl/Fxl.639.

  12. Zhu, R., Sun, Z. & Hu, J. (2012) Special section: Green computing. In Future generation computer systems (Vol. 28, pp. 368–370). Elsevier, New York.

  13. Asad, Z., & Chaudhry, M. A. R. (2016). A two-way street: green big data processing for a greener smart grid. IEEE Systems Journal, 99, 1–11.

    Google Scholar 

  14. Shehabi, A., Josephine, S. S., Sartor, D. A., Brown, R., Herrlin, E. M., Koomey, J. G., Masanet, E. R., Horner, N., Azevede, I. L., & Limtner, W. (2016). United States data center energy usage report. Lawrence Berkeley National Laboratory, Berkeley, CA.

  15. Kumar, S., Deepak, M., & Bibhudatta, P. (2018). Energy-Efficient VM-Placement in Cloud Data Center. Sustainable Computing: Informatics and Systems, 20, 48–55.

    Google Scholar 

  16. Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., & Xia, F. (2015). A survey on virtual Machine migration and server consolidation frameworks for cloud data centers. Journal of Network and Computer Applications, 52, 11–25.

    Google Scholar 

  17. Agar, M. (2013). Developers, engaging the missing link in IT resource efficiency. The Green Grid.

  18. Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The Data center as a Computer An Introduction to the Design of Ware house- Scale Machines (2nd ed.). San Rafael: Morgan and Claypool Publishers.

    Google Scholar 

  19. Mayahi, M. R., Rezazad, M., & Azad, H. S. (2018). Temperature-aware power consumption modeling in Hyper scale cloud data centers. Future Generation Computer Systems, 94, 130–139.

    Google Scholar 

  20. Guenter, B., Iain, N., & Williams, C. (2011). Managing cost, performance, and reliability tradeoffs for energy-aware server provisioning. In INFOCOM, 2011, Proceedings IEEE (pp. 1332–1340).

  21. Qian, H., & Medhi, F. (2011). Server operational cost optimization for cloud computing service providers over a time horizon. In Proceedings of the 11th USENIX conference in Hot topics in management of Internet, cloud, and enterprise networks and services.

  22. El-Sayed, N., Stefanovici, I. A., Amvrosiadis, G., Hwang, A. A., & Schroeder, B. (2012). Temperature management in data centers: why some (might) like it hot. ACM SIGMETRICS Performance Evaluation Review, 40, 163–174.

    Google Scholar 

  23. Bodik, P., Menache, I., Chowdhury, M., Mani, P., Maltz, D. A., & Stoica, I. (2012). Surviving failures in bandwidth-constrained datacenters. In Proceedings of the ACM SIGCOMM 2012 conference in applications, technologies, architectures, and protocols for computer communication (pp. 431–442).

  24. Masoumzadeh, S. S., & Hlavacs, H. (2015). A cooperative multi-agent learning approach to manage physical host nodes for dynamic consolidation of virtual machines. In 2015 IEEE fourth symposium in network cloud computing and applications (NCCA), IEEE.

  25. Li, Z., Yan, C., Xinrong, Yu., & Ning, Yu. (2017). Bayesian network-based Virtual Machines consolidation method. Future Generation Computer Systems, 69(2017), 75–87.

    Google Scholar 

  26. Xu, H., Liu, Y., Wei, W., & Xue, Y. (2019). Migration cost and energy-aware virtual machine consolidation under cloud environments considering remaining runtime. International Journal of Parallel Programming, 47(3), 481–501.

    Google Scholar 

  27. Cao, J., Ma, Z., Xie, J., Zhu, X., Dong, F., & Liu, B. (2017). Towards tenant demand-aware bandwidth allocation strategy in cloud datacenter. Future Generation Computer Systems, 105, 904–915.

    Google Scholar 

  28. Zhang, X., Qiu, L., Qian, Q., & Li, Y. (2015). Virtual machines consolidation and placement based in constraint satisfaction in the clouds. Journal of Computational Information Systems, 10(7), 5251–5258.

    Google Scholar 

  29. Cao, B., Gao, X., Chen, G., & Jin, Y. (2014). NICE: Network-Aware VM consolidation scheme for enter conservation in data centers. In Proceedings of the 20th IEEE international conference in parallel a distributed system (ICADS), Hsinchu, Taiwan, IEEE.

  30. Khalaja, A. H., & Halgamuge, S. K. (2017). A Review on efficient thermal management of air- and liquid-cooled data centers from chip to the cooling system. Applied Energy, 205, 1165–1188.

    Google Scholar 

  31. Kim, C., & Jeon, C. (2015). A parallel migration scheme for fast virtual machine relocation on a cloud cluster. Journal of Supercomputing, 71, 4623–4645.

    Google Scholar 

  32. Usmani, Z., & Singh, S. (2016). A survey of virtual machine placement techniques in a cloud data center. In International conference on information security & privacy (ICISP), IEEE.

  33. Aryania, A., Aghdasi, H. S., & Khanli, L. M. (2018). Energy-aware virtual machine consolidation algorithm based on ant colony system. Grid Computing (pp. 477–491). New York: Springer.

    Google Scholar 

  34. Mazumdar, S., & Pranzo, M. (2017). Power efficient server consolidation for Cloud data center. Future Generation Computer Systems, 70, 4–16.

    Google Scholar 

  35. Halder, K., Bellur, U., & Kulkarni, P. (2012). Risk-aware provisioning and resource aggregation based consolidation of virtual machines. In 5th IEEE international conference in cloud computing (CLOUD) (pp. 598–605).

  36. Garg, S. K., Toosi, A. N., Gopalaiyengar, S. K., & Buyya, R. (2014). SLA-based virtual machine management for heterogeneous workloads in a cloud datacenter. Journal of Network and Computer Applications, 45, 108–120.

    Google Scholar 

  37. Ilager, S., Ramamohanarao, K., & Buyy, R. (2019). ETAS: Energy and thermal aware dynamic virtual machine consolidation in cloud data center with proactive hot spot mitigation. Concurrency and Computation: Practice and Experience, 31(17), e5221.

    Google Scholar 

  38. Kumar, M. R. K., & Raghunathan, S. (2015). Heterogeneity and thermal-aware adaptive heuristics for energy efficient consolidation of virtual machines in Infrastructure clouds. Journal of Computer and Systems Science, 82(2), 191–212.

    MathSciNet  Google Scholar 

  39. Tighe, M., & Bauer, M. (2017). Topology and application aware dynamic VM management in the cloud. Journal of Grid Computing, 15(2), 273–294.

    Google Scholar 

  40. Xiao, X., Xie, G., Cheng, X., & Fan, C. (2017). Maximizing reliability of energy constrained parallel applications on heterogeneous distributed systems. Journal of Computational Science, 26, 344–353.

    MathSciNet  Google Scholar 

  41. Theja, P. R., & Khadar Babu, S. K. (2016). Evolutionary computing based on QoS oriented energy efficient VM consolidation scheme for large scale cloud data centers. Cybernetics And Information Technologies, 16(2), 97–112.

    MathSciNet  Google Scholar 

  42. Khelghatdoust, M., Gramoli, V., Sun, D. (2016). GLAP: Distributed dynamic workload consolidation through gossip-based learning. In 2016 IEEE international conference on cluster computing, IEEE.

  43. Alicherry, M., & Lakshman, T. (2012). Network aware resource allocation in distributed clouds. In Infocom 2012 Proceedings IEEE (pp. 963–971). IEEE.

  44. Malekloo, M.-H., Kara, N., & El Barachi, M. (2018). An energy efficient and SLA compliant approach for resource allocation and consolidation in cloud computing environments. Sustainable Computing, 17, 9–24.

    Google Scholar 

  45. Halder, K., Bellur, U., Kulkarni, P. (2012). Risk aware Provisioning and resource aggregation based consolidation of virtual machines. In IEEE 5th international conference in cloud computing (CLOUD) (pp. 598–605).

  46. Sharma O, Saini H (2016) VM consolidation for cloud data center using median based threshold approach. In Computer Science (pp. 27–33).

  47. Pahlavan, A., Momtazpour, M., & Goudarzi, M. (2012). Data center power reduction by heuristic variation-aware server placement and chassis consolidation. In IEEE 16th CSI international symposium in computer architecture and digital systems (CADS) (pp. 150–155).

  48. Huang, Z., Tsang, D. H. K. (2012). SLA guaranteed virtual machine consolidation for computing clouds. In Proceeding of the 2012 IEEE international conference on communications (ICC), Ottawa, Ontario, Canada, IEEE.

  49. Tchana, A., De Palma, N., & Safieddine, I. (2016). Software consolidation as an efficient energy and cost saving solution. Future Generation Computer Systems (pp. 1–12). New York: Elsevier.

    Google Scholar 

  50. Sedaghat, M., Hernandez-Rodriguez, F., & Elmroth, E. (2016). Decentralized cloud datacenter reconsolidation through emergent and Topology-aware behavior. Future Generation Computer Systems, 56, 51–63.

    Google Scholar 

  51. Wang, J. V., & Ganganath, N. (2018). Bio-inspired heuristics for VM consolidation in cloud data, centers. IEEE Systems Journal, 14(1), 152–163.

    Google Scholar 

  52. Moges, F. F., & Abebe, S. L. (2019). Energy-aware VM placement algorithms for the Open Stack Neat consolidation framework. Journal of Cloud Computing, 8(1), 2.

    Google Scholar 

  53. Sonklin, C., Tang, M., & Tian, Y. C. (2017). New decrease-and-conquer strategies for the dynamic genetic algorithm for server consolidation. In Neural information processing, ICONIP (Vol. 10637). Springer, New York.

  54. Ferdaus, M. H., Murshed, M., Calheiros, R. N., Buyya, R. (2014). Virtual machine consolidation in cloud data centers using ACO metaheuristic. In Proceedings of the 20th international conference in parallel proceedings Euro- Porto Portugal. Springer, New York.

  55. Li, H., & Zhu, G. (2015). Energy-efficient migration and consolidation algorithm, of virtual machines in data centers for cloud computing. Wien: Springer.

    MATH  Google Scholar 

  56. Mann, Z. Á. (2015). Allocation of virtual machines in cloud data centers survey of problem models and optimization algorithms. ACM Computing Surveys, 48(1), 1–34.

    Google Scholar 

  57. Dharmesh, K., Korpi, N., Varma, V. (2013). Network-aware virtual machine consolidation for large data centers. In Proceedings of the 3rd international workshop on network-aware data management (NDM ‘13) Denver, CO 2013.

  58. Zhang, X., Tingming, W., Chen, M., Wei, T., Zhou, J., Shiyan, H., et al. (2019). Energy-aware virtual machine allocation for cloud with resource reservation. The Journal of Systems and Software, 147(2019), 147–161.

    Google Scholar 

  59. Zheng, Q., Li, R., Shah, N., Zhang, J., Tian, F., Chao, K. M., Li, J. (2015). Virtual Machine consolidation placement based on multi-objective biogeography based on optimization. In Future generation computer system (pp. 1–28). Elsevier.

  60. Marzolla, M., Babaoglu, O., & Panzieri (2011). Server Consolidation in cloud through gossiping. In Proceeding of the IEEE international symposium in a world of wireless, mobile and multimedia networks, Lucca, Italy, IEEE.

  61. Beloglazov, A., Abawajyb, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data center for Cloud computing. Future Generation Computer Systems, 28(5), 755–768.

    Google Scholar 

  62. Farahanakian, F., Pahkkala, T., Liljeberg, P., Plosia, J., Tenhunen, H. (2015). Utilization production aware VM consolidation approach for green cloud computing. In Proceedings of the IEEE 8rd international conference in cloud computing (New York, IEEE).

  63. Al-Moalmi, A., Luo, J., Salah, A., & Li, K. (2019). Optimal virtual machine placement based on grey wolf optimization. In Electronics, MDPI.

  64. Xiao, H., Zhigang, H., & Li, K. (2019). Multi-objective VM consolidation based on thresholds and ant colony system in cloud computing. IEEE Transaction Cloud Computing, 7, 53441–53453.

    Google Scholar 

  65. Deng, W., Liu, F., Jin, H., Liao, X., & Liu, H. (2014). Reliability-aware server consolidation for balancing energy-lifetime tradeoff in virtualized cloud datacenters. International Journal of Communication Systems, Wily, 27, 623–642.

    Google Scholar 

  66. Marotta, A., Avallone, S., & Kassler, A. (2017). A joint power efficient server and network consolidation approach for virtualized data centers (pp. 65–80). New York: Elsevier.

    Google Scholar 

  67. Gu, L., Zeng, D., & Guo, S. (2015). Joint optimization of VM placement and request distribution for electricity cost cut in geo-distributed data centers. In 2015 international conference on computing, networking and communications, internet services and applications symposium, IEEE.

  68. Chang, K., Park, S., Kong, H., & Kim, W. (2018). Optimizing energy consumption for a performance-aware cloud data center in the public sector. Sustainable Computing: Informatics and Systems, 20, 34–45.

    Google Scholar 

  69. Nasim, R., Zola, E., & Kassler, A. J. (2018). Robust optimization for energy-efficient virtual machine consolidation in modern datacenters. Cluster Computing, 21(3), 1681–1709.

    Google Scholar 

  70. Beloglazov, A., & Buyya, R. (2013). Managing overloaded hosts for dynamic consolidation of virtual machines in cloud computing under quality of service constraints. IEEE Transactions on Parallel Distributed systems, 24(7), 1366–1379.

    Google Scholar 

  71. Papadimitriou, G., Chatzidimitriou, A., & Gizopoulos, D. (2019). Adaptive voltage/frequency scaling and core allocation for balanced energy and performance on multicore CPUs. In 2019 IEEE international symposium on high performance computer architecture (HPCA) (pp. 133–146). IEEE.

  72. Terra-Neves, M., Lynce, I., & Manquinho, V. (2019). Virtual machine consolidation using constraint-based multi-objective optimization. Journal of Heuristics, 25(3), 339–375.

    Google Scholar 

  73. Khan, A. A., Zakarya, M., & Khan, R. (2018). Energy-aware dynamic resource management in elastic cloud datacenters. Simulation modelling practice and theory (pp. 82–99). New York: Elsevier.

    Google Scholar 

  74. Ahmad, R. W., et al. (2015). Virtual machine migration in cloud data centers: a review, taxonomy, and open research issues. J. Supercomput., 71(7), 2473–2515.

    Google Scholar 

  75. Yao, L., Wu, G., Ren, J., Zhu, Y., & Li, Y. (2013). Guaranteeing fault-tolerant requirement load balancing scheme based on VM migration. The Computer Journal, 57, 225–232.

    Google Scholar 

  76. Xiao, X., Zheng, W., Xia, Y., Sun, X., Peng, Q., & Guo, Y. (2019). A workload-aware VM consolidation method based on coalitional game for energy-saving in cloud. IEEE Access, 7, 80421–80430.

    Google Scholar 

  77. Shukla, R., Gupta, R. K., & Kashyap, R. (2019). A Multiphase Pre-copy Strategy for the Virtual Machine Migration in Cloud. Smart Intelligent Computing and Applications. Singapore: Springer.

    Google Scholar 

  78. Kapil, D., Pilli E. S., Joshi R. C. (2012). Live virtual machine migration techniques: Survey and research challenges. In 3rd international advance computing conference (IACC), IEEE, New York (pp. 963–969).

  79. Abe, Y., Geambasu, R., Joshi, K., & Satyanarayana, M. (2016). Urgent virtual machine eviction with enlightened post-copy. ACM.

  80. Hu, L., Zhao, J., Xu, G., Ding, Y., & Chu, J. (2013). HMDC: Live virtual machine migration based on hybrid memory copy and delta compression. Applied Mathematics, 7, 639–646.

    Google Scholar 

  81. Zhu, L., Chen, J., He, Q., Huang, D., & Wu, S. (2013). A smart iteration-termination criterion based live virtual machine migration. Network and Parallel Computing (pp. 118–129). Berlin: Springer.

    Google Scholar 

  82. Shribman, A., & Hudzia, B. (2013). Pre-Copy and post-copy VM live migration for memory intensive applications. uro-Par: parallel processing workshops (pp. 539–547). Berlin: Springer.

    Google Scholar 

  83. Nayak, P.C., Garg, D., Shakva, A. (2018). A research paper of existing live VM migration and a hybrid VM migration approach in cloud computing. In 2018 2nd international conference on trends in electronics and informatics (ICOEI).

  84. Yin, F., Liu, W., & Song, J. (2014). Live virtual machine migration with an optimized three-stagememory copy. Future Information Technology (pp. 69–75). Berlin: Springer.

    Google Scholar 

  85. Aikema, D., Mirtchovski, A., Kiddle, C., & Simmonds, R. (2012) Green cloud VM migration: Power use analysis. In International green computing conference (IGCC), IEEE (pp. 1–6).

  86. Zhou, H., Li, Q., Kwang, K.-., & Zha, H. (2018). DADTA: A novel adaptive strategy for energy and performance efficient virtual machine consolidation. Journal of Parallel Distribution Computing, 121, 15–26.

    Google Scholar 

  87. Sansottera, A., Zoni, D., Cremonesi, P., & Fornaciari, W. (2012). Consolidation of multi-tier workloads performance and reliability constraints. In International conference presented at the high performance computing a simulation (HPCS), 2012, Madrid, Spain.

  88. Ferreto, T. C., Netto, M. A., Calheiros, R. N., & De Rose, C. A. (2011). Server consolidation with migration control for virtualized data centers. Future Generation Computer Systems, 27, 1027–1034.

    Google Scholar 

  89. Rahman, M., & Graha, P. (2017). Compatibility-base Static VM Placement Minimizing Interface. Journal of Network and Computer Applications, 84, 1–21.

    Google Scholar 

  90. Beloglazov, A., & Buyya, R. (2011). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic of virtual machines in cloud data centers. Concurrency and computation: Practice and Experience, 24(13), 1397–1420.

    Google Scholar 

  91. Rai, R., Sahoo, G., & Mehfuz, S. (2017). Effect of VM Selection Heuristics on Energy Consumption and SLAs During VM Migrations in Cloud. Data Centers. Advances in Computational Intelligence (pp. 189–199). New York: Springer.

    Google Scholar 

  92. Terra-Neves, M., Lynce, I., & Manquinho, V. (2018). Virtual machine consolidation using constraint-based multi-objective optimization. Journal of Heuristics, 25(3), 339–375.

    Google Scholar 

  93. Arcaini, P., Holom, R.-M., & Riccobene, E. (2016). ASM-based formal design of an adaptivity component for a Cloud system. Formal Aspects of Computing, 28(4), 567–595.

    MathSciNet  MATH  Google Scholar 

  94. Ruiz, M. C., Cazorla, D., Pérez, D., & Conejero, J. (2016). Formal performance evaluation of the Map/Reduce framework within cloud computing. The Journal of Supercomputing, 72(8), 3136–3155.

    Google Scholar 

  95. Abid, R., Salaün, G., & De Palma, N. (2016). Formal design of dynamic reconfiguration protocol for cloud applications. Science of Computer Programming, 117, 1–16.

    Google Scholar 

  96. De, S., & De, S. (2016). Modeling decoupled mobile cloud computing using mobile UNITY. Concurrency and Computation: Practice and Experience, 28(10), 2811–2855.

    Google Scholar 

  97. Souri, A., Navimipour, N. J., & Rahmani, A. M. (2017). Formal verification approaches and standards in the cloud computing: A comprehensive and systematic review. Computer Standards & Interfaces, 58, 1–22.

    Google Scholar 

  98. Sandıkkaya, M. T., Ovatman, T., & Harmancı, A. E. (2015). Design and formal verification of a cloud compliant secure logging mechanism. IET Information Security, 10(4), 203–214.

    Google Scholar 

  99. Ficco, M., Palmieri, F., & Castiglione, A. (2015). Modeling security requirements for cloud-based system development. Concurrency and Computation: Practice and Experience, 27(8), 2107–2124.

    Google Scholar 

  100. Jarraya, Y., Eghtesadi, A., Sadri, S., Debbabi, M., & Pourzandi, M. (2015). Verification of firewall reconfiguration for virtual machines migrations in the cloud. Computer Networks, 93, 480–491.

    Google Scholar 

  101. Rezaee, A., Rahmani, A. M., Movaghar, A., & Teshnehlab, M. (2014). Formal process algebraic modeling, verification, and analysis of an abstract Fuzzy Inference Cloud Service. The Journal of Supercomputing, 67(2), 345–383.

    Google Scholar 

  102. Deng, P., Ren, G., Yuan, W., Chen, F., & Hua, Q. (2015). An integrated framework of formal methods for interaction behaviors among industrial equipment. Microprocessors and Microsystems, 39(8), 1296–1304.

    Google Scholar 

  103. Keshanchi, B., Souri, A., & Navimipour, N. J. (2016). An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing. Journal of Systems and Software, 124, 1–21.

    Google Scholar 

  104. Cao, J.-W., Zhang, F., Xu, K., Liu, L.-C., & Wu, C. (2011). Formal verification of temporal properties for reduced overhead in grid scientific workflows. Journal of Computer Science and Technology, 26(6), 1017–1030.

    MathSciNet  MATH  Google Scholar 

  105. Amoretti, M., Grazioli, A., Senni, V., Tiezzi, F., & Zanichelli, F. (2014). A formalized framework for mobile cloud computing. Service Oriented Computing and Applications, 9(3), 229–248.

    Google Scholar 

  106. Salaün, G., Boyer, F., Coupaye, T., De Palma, N., Etchevers, X., & Gruber, O. (2013). An experience report on the verification of autonomic protocols in the cloud. Innovations in Systems and Software Engineering, 9(2), 105–117.

    Google Scholar 

  107. Koomosny, D., Mrdovic, S., Ilka, P., Grejtak, M., & Paspichal, O. (2017). Testing Internet applications and services using Planet Lab. Computer Standards & Interfaces, 53, 33–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Masoud Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, R., Rahmani, A.M. Virtual Machine Consolidation in Cloud Computing Systems: Challenges and Future Trends. Wireless Pers Commun 115, 2289–2326 (2020). https://doi.org/10.1007/s11277-020-07682-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07682-8

Keywords

Navigation