Skip to main content
Log in

Wireless Sensor Network Path Optimization Using Sensor Node Coverage Area Calculation Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The proposed work is based on the path optimization approach for wireless sensor network (WSN). Path optimization is achieved by using the NSG 2.1 Tool, TCL Script file and NS2 simulator to improve the quality of service (QoS). Path optimization approach finds best suitable path between sensor nodes of WSN. The routing approach is not only the solution to improve the quality but also improves the WSN performance. The node cardinally is taken under consideration using the ad-hoc on demand distance vector routing protocol mechanism. Ad hoc approach emphasize on sensor nodes coverage area performance along with simulation time. NSG 2.1 Tool calculates the sensor node packet data delivery speed which can facilitate inter-node communication successfully. An experimental result verified that the proposed design is the best possible method which can escape from slow network response while covering maximum sensor nodes. It achieves coverage support in sensor node deployment. The result outcomes show best path for transferring packet from one sensor node to another node. The coverage area of sensor node gives the percentage of average coverage ratio of each node with respect to the simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun, Z., & Li, Z. (2013). Wireless sensor network path optimization based on hybrid algorithm. Telkomnika, 11(9), 5352–5358.

    Article  Google Scholar 

  2. Ilyas, N., Akbar, M., Ullah, R., Khalid, M., Arif, A., Hafeez, A., et al. (2015). SEDG: Scalable and efficient data gathering routing protocol for underwater WSNs. Procedia Computer Science, 52, 584–591.

    Article  Google Scholar 

  3. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151–165.

    Article  Google Scholar 

  4. Ochoa, S. F., & Santos, R. (2015). Human-centric wireless sensor networks to improve information availability during urban search and rescue activities. Information Fusion, 22, 71–84.

    Article  Google Scholar 

  5. Saeed, A., Ahmadinia, A., Javed, A., & Larijani, H. (2016). Random neural network based intelligent intrusion detection for wireless sensor networks. In The international conference on computational science (Vol. 80, pp. 2372–2376).

  6. Zhang, W., Gong, X., Han, G., & Zhao, Y. (2018). An improved ant colony for path planning in one scenic area with many spots. IEEE Access, 5, 13260–13268.

    Article  Google Scholar 

  7. Jain, A., Khari, M., Verdú, E., Omatsu, S., & Crespo, R. G. (2020). A route selection approach for variable data transmission in wireless sensor networks. Journal of Supercomputing. https://doi.org/10.1007/s10586-020-03115-0.

    Article  Google Scholar 

  8. Gandhi, S., Chaubey, N., Tada, N., & Trivedi, S. (2012). Scenario-based performance comparison of reactive, proactive & hybrid protocols in MANET. In International conference on computer communication and informatics (ICCCI) (pp. 1–5).

  9. Saginbekov, S., & Shakenov, C. (2016). Hybrid simulators for wireless sensor networks. In IEEE conference on wireless sensors (ICWISE) (pp. 59–65).

  10. Abu-Mahfouz, A. M., & Hancke, G. P. (2011). ns-2 extension to simulate localization system in wireless sensor networks. In IEEE.

  11. Gennaro, S. F. D., Matese, A., Mancin, M., Primicerio, J., & Palliotti, A. (2014). An open-source and low-cost monitoring system for precision enology. Sensors, 14, 23388–23397.

    Article  Google Scholar 

  12. Alghamdi, T. A. (2018). Secure and energy efficient path optimization technique in wireless sensor networks using DH method. IEEE Access, 6, 53576.

    Article  Google Scholar 

  13. Yu, C.-M., & Ku, M.-L. (2018). Joint hybrid transmission and adaptive routing for lifetime extension of WSNs. IEEE Access, 6, 21658–21666.

    Article  Google Scholar 

  14. Huang, M., Liu, Y., Zhang, N., Xiong, N. N., Liu, A., Zeng, Z., et al. (2018). A service routing based caching scheme for cloud CRNs. IEEE Access, 6, 15787–15805.

    Article  Google Scholar 

  15. Naureen, A., Zhang, N., & Furber, S. (2017). Identify energy holes in randomly deployed hierarchical wireless sensor networks. IEEE Access, 5, 21395–21417.

    Article  Google Scholar 

  16. Mir, Z. H., & Ko, Y. B. (2017). Collaborative topology control for many to many communication in wireless sensor networks. IEEE Access, 5, 15927–15941.

    Article  Google Scholar 

  17. Ahmed, S., Ramani, A. K., & Zafar, N. A. (2011). Formal verification of route request procedure for AODV routing protocol. International Journal of Advanced Research in Computer Science, 2(1), 532.

    Google Scholar 

  18. Chiyangwa, S., & Kwiatkowska, M. (2003). Modeling ad hoc on-demand distance vector (AODV) protocol with time automata. In Proceedings of third workshop on automated verification of critical systems, 2003.

  19. Manisekaran, S. V., & Venkatesan, R. (2016). An analysis of software-defined routing approach for wireless sensor networks. Computers & Electrical Engineering, 56, 456–467.

    Article  Google Scholar 

  20. Gupta, B., Iyer, S. K., & Manjunath, D. (2008). Topological properties of the one dimensional exponential random geometric graph. Random Structures & Algorithms, 32(2), 181–204.

    Article  MathSciNet  Google Scholar 

  21. Doheir, M., Kadhim, A., Fariza, K. A., Samah, A., Hussin, B., & Basari, A. S. H. (2014). Extension of NS2 framework for wireless sensor network. Journal of Computational and Theoretical Nanoscience, 4, 400–407.

    Google Scholar 

  22. Saeed, A., Ahmadinia, A., Javed, A., & Larijani, H. (2016). Random neural network based intelligent intrusion detection for wireless sensor networks. The International Conference on Computational Science, 80, 2372–2376.

    Google Scholar 

  23. Ranasinghe, D. C., Falkner, N. J. G., Chao, P., & Hao, W. (2013). Wireless sensing platform for remote monitoring and control of wine fermentation. In IEEE ISSNIP, 2013 (pp. 503–508).

  24. Douik, A., Aly, S. A., Al-Naffouri, T. Y., & Alouini, M.-S. (2017). Cardinality estimation algorithm in large-scale anonymous wireless sensor networks. In International conference on advanced intelligent systems and informatics, 2017 (pp. 1–10).

  25. Baranidharan, B., & Shanthi, B. (2011). A new graph theory based routing protocol for wireless sensor networks. International Journal on Applications of Graph Theory in Wireless Ad Hoc Networks and Sensor Networks (GRAPH-HOC), 3(4), 15–26.

    Article  Google Scholar 

  26. Pricop, E., Mihalache, S. F., Paraschiv, N., Fattahi, J., & Zamfir, F. (2016). Considerations regarding security issues impact on systems availability. In IEEE, international conference on electronics, computers and artificial intelligence (ECAI) (pp. 1–6).

  27. Maurya, P. K., Sharma, G., Sahu, V., Roberts, A., & Srivastava, M. (2012). An overview of AODV routing protocol. International Journal of Modern Engineering Research (IJMER), 2(3), 728–732.

    Google Scholar 

  28. Minakov, I., Passerone, R., Rizzardi, A., & Sicari, (2016). Routing behavior across WSN simulators: The AODV case study. In IEEE world conference on factory communication systems (WFCS).

  29. Tan, H., Hao, X., Wang, Y., Lau, F. C. M., & Lv, Y. (2013). An approximate approach for area coverage in wireless sensor networks. Procedia Computer Science, 19, 240–247.

    Article  Google Scholar 

  30. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 17(4), 1–16.

    Google Scholar 

  31. Xie, T., Zhang, C., Zhang, Z., & Yang, K. (2019). Utilizing active sensor nodes in smart environments for optimal communication coverage. IEEE Access, 7, 11338–11348.

    Article  Google Scholar 

  32. Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., et al. (2017). A balanced energy consuming and hole alleviating algorithm for wireless sensor networks. IEEE Access, 5, 6134–6150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Soni Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, U.S., Gupta, N. Wireless Sensor Network Path Optimization Using Sensor Node Coverage Area Calculation Approach. Wireless Pers Commun 116, 91–103 (2021). https://doi.org/10.1007/s11277-020-07706-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07706-3

Keywords

Navigation