Skip to main content
Log in

Blind Digital Modulation Identification Using an Efficient Method-of-Moments Estimator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The automatic identification of the modulation format of a detected signal is a major task of an intelligent receiver in both military and civilian applications. It is well known that the maximum likelihood (ML) classifier requires a priori knowledge of the incoming signal and channel (including amplitude, timing information, noise power, and the roll-off factor of the pulse-shaping filter). To relax this requirement, we introduce a novel estimator to estimate the parameters required by the ML classifier which is blind to the modulation scheme of the received signal, and this gives rise to a new blind modulation classifier for digital amplitude-phase modulated signals. While the proposed classifier is completely blind, the simulation results show that the performance of this classifier is very close to the optimal non-blind classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. In this paper, we assume a block fading channel in which the channel amplitude and phase are constant over the N symbol observation interval.

  2. +∞k=−∞ x(t − kT) = (1/T) ∑ +∞k=−∞ X(k/T) exp (j2πkt/T), where X(f) is the Fourier transform of a function x(t).

References

  1. Wang, F., Yang, C., Huang, S., & Wang, H. (2019). Automatic modulation classification based on joint feature map and convolutional neural network. IET Radar, 13(6), 998–1003.

    Article  Google Scholar 

  2. Li, W., Dou, Z., Qi, L., & Shi, C. (2019). Wavelet transform based modulation classification for 5G and UAV communication in multipath fading channel. Physical Communication, 34, 272–282.

    Article  Google Scholar 

  3. Mihandoost, S., & Azimzadeh, E. (2020). Introducing an efficient statistical model for automatic modulation classification. Journal of Signal Processing Systems, 92, 123–134.

    Article  Google Scholar 

  4. Zhang, J., & Lv, Y. (2018). Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Transactions on Vehicular Technology, 67(9), 8192–8204.

    Article  Google Scholar 

  5. Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(4), 455–469.

    Article  Google Scholar 

  6. Chavali, V., & DaSilva, C. (2011). Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels. IEEE Transactions on Communications, 59(8), 2051–2056.

    Article  Google Scholar 

  7. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. Proceedings of IEEE MILCOM, 2000, 670–674.

    Google Scholar 

  8. Dobre, O. A. et al. (2004). On the classification of linearly modulated signals in fading channels. In Proceedings of conference on information sciences and systems (CISS). Princeton University.

  9. Kay, S. M. (2013). Fundamentals of statistical signal processing (Vol. 1). London: Pearson Education.

    Google Scholar 

  10. Dobre, O. A., & Hameed, F. (2006). Likelihood-based algorithms for linear digital modulation classification in fading channels. In Canadian conference on electrical and computer engineering. CCECE’06 (pp. 1347–1350).

  11. Headley, W. C., & da Silva, C. R. (2011). Asynchronous classification of digital amplitude-phase modulated signals in flat-fading channels. IEEE Transactions on Communications, 59(1), 7–12.

    Article  Google Scholar 

  12. Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.

    Article  Google Scholar 

  13. Zhu, Z., & Nandi, A. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communications, 13(8), 4483–4494.

    Article  Google Scholar 

  14. Van Trees, H. L. (2004). Detection, estimation, and modulation theory. London: Wiley.

    MATH  Google Scholar 

  15. Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.

    Article  Google Scholar 

  16. Lay, N., & Polydoros, A. (1995). Per-survivor processing for channel acquisition, data detection and modulation classification. In Proceedings of ASILOMAR (pp. 170–174).

  17. Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.

    Article  Google Scholar 

  18. Mengali, U., & D’Andrea, A. N. (1997). Synchronization techniques for digital receivers. New York: Plenum Press.

    Book  Google Scholar 

  19. Salehi, M., & Proakis, J. G. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  20. Huang, S., Jiang, Y., Gao, Y., Feng, Z., & Zhang, P. (2019). Automatic modulation classification using contrastive fully convolutional network. IEEE Wireless Communications Letters, 8(4), 1044–1047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Amiri Ara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri Ara, H., Zahabi, M.R. & Ebrahimzadeh, A. Blind Digital Modulation Identification Using an Efficient Method-of-Moments Estimator. Wireless Pers Commun 116, 301–310 (2021). https://doi.org/10.1007/s11277-020-07715-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07715-2

Keywords

Navigation