Skip to main content
Log in

Detection of Target Frequency from SSVEP Signal Using Empirical Mode Decomposition for SSVEP Based BCI Inference System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper describes the effectiveness of feature obtained by power spectrum analysis (PSA) as well as the combined method of empirical mode decomposition (EMD) and PSA for the development of brain–computer interface (BCI) system using steady-state visual evoked potential (SSVEP). Accurate detection of SSVEP response from the recorded EEG signal is a difficult task for a new development of the BCI inference system. The EMD technique is a non-linear method of signal decomposition, which generates several intrinsic mode functions (IMFs) of different flickering frequencies. Prominent IMF signal of SSVEP plays a vital role in the accurate detection of frequency. The proposed method achieves the average detection accuracy of 81.45% over four subjects; in contrast, the conventional method of PSA achieves average detection accuracy of 80.43%. The achieved result indicates that the proposed method out performs state of the art by more than 1.02% over four subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaudhary, U., Birbaumer, N., & Ramos-Murguialday, A. (2016). Brain–computer interfaces for Communication and rehabilitation. Nature Reviews Neurology, 12(9), 513–525.

    Article  Google Scholar 

  2. Wang, Y. T., Wang, Y., & Jung, T. P. (2011). A cell-phone-based brain–computer interface for communication in daily life. Journal of Neural Engineering, 8(2), 025018.

    Article  Google Scholar 

  3. Wu, Z., Lai, Y., Xia, Y., Wu, D., & Yao, D. (2008). Stimulator selection in SSVEP-based BCI. Medical Engineering and Physics, 30, 1079–1088.

    Article  Google Scholar 

  4. Amiri, S., Rabbi, A., Azinfar, L., & Fazzel-Rezai, R. (2013). A review of P300, SSVEP and hybrid P300/SSVEP brain computer interface systems—Recent progress and future prospects. Intech, pp. 195–213, vol. ISBN:978-953.

  5. Halder, S., Hammer, E., Kleih, S., & Bogdan, M. (2013). Prediction of auditory and visual P300 brain–computer interface aptitude. PLoS ONE, 8(2), e53513.

    Article  Google Scholar 

  6. Mohammad, A., & Angelika, P. (2016). Advancing the detection of steady-state visual evoked potentials in brain–computer interfaces. Journal of Neural Engineering, 13, 036005.

    Article  Google Scholar 

  7. İşcan, Z., & Nikulin, V. V. (2018). Steady-state visual evoked potential (SSVEP) based brain–computerinterface (BCI) performance under different perturbations. PLoS ONE, 13, e0191673.

    Article  Google Scholar 

  8. Zhang, Y., Zhou, G., Zho, Q., Jin, J., Wang, X., & Cichocki, A. (2011). Multiway canonical correlation analysis forfrequency components recognition in SSVEP-based BCIs. International Conference on Neural information processing, 3, 287–295.

    Article  Google Scholar 

  9. No-Sang, K., Klaus-Robert, M., & Seong-Whan, L. (2015). A lower limb exoskeleton control system based on steady-state visual evoked potentials. Journal of Neural Engineering, 12, 056009.

    Article  Google Scholar 

  10. Hwang, H.-J., Lim, J.-H., Jung, Y.-J., Choi, H., Lee, S. W., & Im, C.-H. (2012). Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. Journal of Neuroscience Methods, 208, 59–65.

    Article  Google Scholar 

  11. Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of artifacts from EEG signal: A review. MDPI Sensors, 19(5), 987.

    Article  Google Scholar 

  12. Wang, Y., Wang, R., Gao, X., Hong, B., & Gao, S. (2006). A practical VEP-based brain computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 234–239.

    Article  Google Scholar 

  13. Friman, O., Volosyak, I., & Graser, A. (2007). Multiple channel detection of steady state visual evoked potentials for brain computer interfaces. IEEE Transaction on Biomedical Engineering, 54(4), 742.

    Article  Google Scholar 

  14. Saraswati, S., & Vidya, M. (2019). Assessment of cognitive aging using an SSVEP-based brain–computer interface system. Big Data Cognitive Computing, 3, 29–33.

    Article  Google Scholar 

  15. Teng, M., Hui, L., Lili, D., Hao, Y., Xulin, L., Peiyang, L., et al. (2017). The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. Journal of Neural Engineering, 14, 026015.

    Article  Google Scholar 

  16. Yin, E., Zhou, Z., Jiang, J., Chen, F., Liu, Y., & Hu, D. (2014). A speedy hybrid BCI spelling approach combining P300 and SSVEP. IEEE Transactions on Biomedical Engineering, 61, 473–483.

    Article  Google Scholar 

  17. Gao, S., Wang, Y., Gao, X., & Hong, B. (2014). Visual and auditory brain–computer interfaces. IEEE. Transactions on Biomedical Engineering, 61, 1436–1447.

    Article  Google Scholar 

  18. Chen, Y.-F., Atal, K., Xie, S.-Q., & Liu, Q. (2017). A new multivariate empirical mode decomposition method for Improving the performance of SSVEP-based brain–computer interface. Journal of Neural Engineering, 14, 046028.

    Article  Google Scholar 

  19. Labate, D., Foresta, F. L., Occhiuto, G., Morabito, F. C., Lay-Ekuakille, A., & Vergallo, P. (2013). Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: A comparison. IEEE Sensors Journal, 13, 2666–2674.

    Article  Google Scholar 

  20. Flandrin, P., Rilling, G., & Goncalves, P. (2003). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letter, 11, 112.

    Article  Google Scholar 

  21. Al-Fahoum, A. S., & Al-Fraiha, A. A. (2014). Methods of EEG Signal features extraction using linear analysis in frequency and time-frequency domains. International Scholarly Research Notices, 2014, 7.

    Google Scholar 

  22. Gajic, D., Djurovic, Z., Gligorijevic, J., Di Gennaro, S., & Savic-Gajic, I. (2015). Detection of epileptic form activity in EEG signals based on time-frequency and non-linear analysis. Frontiers in Computational Neuroscience, 9, 38.

    Article  Google Scholar 

  23. Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. Journal of Neural. Engineering, 6, 046002.

    Article  Google Scholar 

  24. Nakanishi, M., Wang, Y., Wang, Y.-T., & Jung, T.-P. (2015). A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS ONE, 10, e0140703.

    Article  Google Scholar 

  25. Zhang, Y. U., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014). Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. International Journal of Neural System, 24(04), 1450013.

    Article  Google Scholar 

  26. Liu, Q., Chen, K., Ai, Q., & Xie, S. Q. (2014). Review: Recent development of signal processing algorithms for ssvep-based brain–computer interfaces. Journal of Medical and Biological Engineering, 34(4), 209–309.

    Article  Google Scholar 

  27. Vialatte, F.-B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Progress in Neurobiology, 90, 418–438.

    Article  Google Scholar 

  28. Chen, X., Wang, Y., Gao, S., Jung, T.-P., & Gao, X. (2015). Filter bank canonical correlation analysis for Implementing a high-speed SSVEP-based brain–computer interface. Journal of Neural Engineering, 42, 046008.

    Article  Google Scholar 

  29. Cichocki, A., Shishkin, S., Musha, T., Leonowicz, Z., Asada, T., & Kurachi, T. (2006). EEG filtering based on blind source separation for early detection of Alzheimer’s disease. Clinical Neurophysiology, 116, 729–737.

    Article  Google Scholar 

  30. Mukul, M. K., & Matsuno, F. (2011). Feature extraction from subband brain signal and its classification. SICE Journal of Control, Measurement and System Integration, 4(5), 332–340.

    Article  Google Scholar 

  31. Zhang, Y., Xu, P., Cheng, K., & Yao, D. (2014). Multivariate synchronization index for frequency recognition of SSVEP-based brain–computer interface. Journal of Neuroscience Method, 221, 32–40.

    Article  Google Scholar 

  32. Seyed Mohammad, M. S., Mohammad, P., & Ali Motie, N. (2018). Improving the performance of the SSVEP-based BCI system using optimized singular spectrum analysis (OSSA). Biomedical Signal. Processing and Control, 46, 46.

    Article  Google Scholar 

  33. Gao, Z. K., Zhang, J., Dang, W. D., Yang, Y. X., Cai, Q., Mu, C. X., et al. (2018). Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. EPL, 122, 40010.

    Article  Google Scholar 

  34. Zhuang, N., Zeng, Y., Tong, L., Zhang, C., Zhang, H., & Yan B. (2017). Emotion recognition from EEG signals by using multidimensional information in EMD domain. Biomed Research International Journal Hindawi Article ID 8317357.

  35. AVI SSVEP Dataset-Adnan Vilic. www.setzner.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Ojha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, M.K., Mukul, M.K. Detection of Target Frequency from SSVEP Signal Using Empirical Mode Decomposition for SSVEP Based BCI Inference System. Wireless Pers Commun 116, 777–789 (2021). https://doi.org/10.1007/s11277-020-07738-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07738-9

Keywords

Navigation