Skip to main content

Advertisement

Log in

Co-design Structure of Dual-Band LNA and Dual-Band BPF for Radio Navigation Aid Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a co-design of a dual-band low-noise amplifier (DB-LNA) with a dual-band band-pass filter (DB-BPF) for a radio navigation aid (RNA) application was proposed. The novel development was that the DB-LNA was directly integrated with the DB-BPF instead of connecting the output matching network (OMN) of the DB-LNA to the 50 Ω-port of the DB-BPF. Thus, this DB-BPF had a double function, serving as the DB-BPF and also as the OMN. This architecture was called the co-design structure. ZIN analysis was used to evaluate the co-design network structure. In general, the design procedure was divided into four sections, including (1) DB-BPF, (2) DB-LNA, (3) Cascade DB-LNA and DB-BPF, and (4) Co-design DB-LNA and DB-BPF. The co-design method was applied in an RNA implementation at dual-band frequencies of 113 MHz and 332 MHz. Validation of the proposed structure is confirmed for its accuracy by simulating the impedance characteristic ZIN, S parameter simulation, and measurement results. The key contributions of this paper were that: (1) The co-design structure could reduce the passive component by 31.5%, (2) the total size of the DB-LNA and DB-BPF using the co-design method was smaller than the cascaded method by 11.36%, (3) more light-weight in fabrication due to a smaller size, and (4) finally, the proposed LNA has a higher figure of merit than the other LNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Sim, C. Y. D., Shih, Y. K., & Chang, M. H. (2015). Compact slot antenna for wireless local area network 2.4/5.2/5.8 GHz applications. IET Microwaves, Antennas and Propagation, 9(6), 495–501. https://doi.org/10.1049/iet-map.2013.0688.

    Article  Google Scholar 

  2. Yang, C. W., & Jung, C. W. (2010). Broad dual-band PIFA using self-complementary structure for DVB-H applications. Electronics Letters, 46(9), 606–608. https://doi.org/10.1049/el.2010.0512.

    Article  Google Scholar 

  3. Sattar, S., Zainal, T. U. N., & Zulkifli, A. (2017). A 2. 4/5. 2-GHz concurrent dual-band CMOS low noise amplifier. IEEE Access, 5, 2148–21156. https://doi.org/10.1109/ACCESS.2017.2756985.

    Article  Google Scholar 

  4. Firmansyah, T., et al. (2017). Dual-wideband band pass filter using folded cross-stub stepped impedance resonator. Microwave and Optical Technology Letters, 59(11), 2929–2934. https://doi.org/10.1002/mop.30848.

    Article  Google Scholar 

  5. Qi, G., Mak, P. I., & Martins, R. P. (2017). A 0.038-mm2 SAW-less multiband transceiver using an N-Path SC gain loop. IEEE Journal of Solid-State Circuits, 52(8), 2055–2070. https://doi.org/10.1109/JSSC.2017.2697409.

    Article  Google Scholar 

  6. Farazian, M., Asuri, B., & Larson, L. E. (2010). A dual-band CMOS CDMA transmitter without external SAW filtering. IEEE Transactions on Microwave Theory and Techniques, 58(5 PART 2), 1349–1358. https://doi.org/10.1109/tmtt.2010.2042851.

    Article  Google Scholar 

  7. Maeda, T., et al. (2006). A low-power dual-band triple-mode WLAN CMOS transceiver. IEEE Journal of Solid-State Circuits, 41(11), 2481–2489. https://doi.org/10.1109/JSSC.2006.883323.

    Article  Google Scholar 

  8. Chang, W. S., & Chang, C. Y. (2011). Analytical design of microstrip short-circuit terminated stepped-impedance resonator dual-band filters. IEEE Transactions on Microwave Theory and Techniques, 59(7), 1730–1739. https://doi.org/10.1109/TMTT.2011.2132140.

    Article  Google Scholar 

  9. Le Dai, G., Guo, Y. X., & Xia, M. Y. (2010). Dual-band bandpass filter using parallel short-ended feed scheme. IEEE Microwave and Wireless Components Letters, 20(6), 325–327. https://doi.org/10.1109/LMWC.2010.2047517.

    Article  Google Scholar 

  10. Tseng, C. H., & Shao, H. Y. (2010). A new dual-band microstrip bandpass filter using net-type resonators. IEEE Microwave and Wireless Components Letters, 20(4), 196–198. https://doi.org/10.1109/LMWC.2010.2042549.

    Article  Google Scholar 

  11. Liu, H. W., et al. (2010). Compact dual-band bandpass filter using defected microstrip structure for GPS and WLAN applications. Electronics Letters, 46(21), 1444–1445. https://doi.org/10.1049/el.2010.2146.

    Article  Google Scholar 

  12. Hung, C.-Y., Yang, R.-Y., & Lin, Y.-L. (2010). A simple method to design a compact and high performance dual-band bandpass filter for GSM and WLAN. Progress in Electromagnetics Research C, 13, 187–193.

    Article  Google Scholar 

  13. Chen, X., Han, G., Ma, R., Gao, J., & Zhang, W. (2009). Design of balanced dual-band bandpass filter with self-feedback structure. ETRI Journal, 31(4), 475–477. https://doi.org/10.4218/etrij.09.0209.0062.

    Article  Google Scholar 

  14. Weng, M. H., Wu, H. W., & Su, Y. K. (2007). Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs. IEEE Microwave and Wireless Components Letters, 17(3), 187–189. https://doi.org/10.1109/LMWC.2006.890463.

    Article  Google Scholar 

  15. Mingqi, Z., Xiaohong, T., & Fei, X. (2008). Compact dual band bandpass filter using novel E-type resonators with controllable bandwidths. IEEE Microwave and Wireless Components Letters, 18(12), 779–781. https://doi.org/10.1109/LMWC.2008.2007696.

    Article  Google Scholar 

  16. Wu, B., Liang, C. H., Li, Q., & Qin, P. Y. (2008). Novel dual-band filter incorporating defected SIR and microstrip SIR. IEEE Microwave and Wireless Components Letters, 18(6), 392–394. https://doi.org/10.1109/LMWC.2008.922614.

    Article  Google Scholar 

  17. Lin, Y. C., Horng, T. S., & Huang, H. H. (2014). Synthesizing a multiband LTCC bandpass filter with specified transmission- and reflection-zero frequencies. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3351–3361. https://doi.org/10.1109/TMTT.2014.2365454.

    Article  Google Scholar 

  18. Qin, P., & Xue, Q. (2017). Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microwave and Wireless Components Letters, 27(7), 657–659. https://doi.org/10.1109/LMWC.2017.2711524.

    Article  Google Scholar 

  19. Qin, P., & Xue, Q. (2017). Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microwave and Wireless Components Letters, 27(6), 587–589. https://doi.org/10.1109/LMWC.2017.2701300.

    Article  Google Scholar 

  20. Belmas, F., Hameau, F., & Fournier, J. (2012). A low power inductorless wideband LNA with Gm enhancement and noise cancellation. IEEE Microwave and Wireless Components Letters, 47(5), 1094–1103. https://doi.org/10.1109/JSSC.2012.2185533.

    Article  Google Scholar 

  21. Singh, R., Slovin, G., Xu, M., Schlesinger, T. E., Bain, J. A., & Paramesh, J. (2017). A reconfigurable dual-frequency narrowband CMOS LNA using phase-change RF Switches. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4689–4702. https://doi.org/10.1109/TMTT.2017.2742481.

    Article  Google Scholar 

  22. Ulusoy, A. Ç., Kaynak, M., Purtova, T., Tillack, B., & Schumacher, H. (2012). 24 to 79 GHz frequency band reconfigurable LNA. Electronics Letters, 48(25), 1598–1600. https://doi.org/10.1049/el.2012.2830.

    Article  Google Scholar 

  23. Wibisono, G., & Firmansyah, T. (2012). Concurrent multiband low noise amplifier with multisection impedance transformer. In Asia-Pacific Microwave Conference Proceedings, APMC, 2012, https://doi.org/10.1109/apmc.2012.6421776.

  24. Wu, W. J., Liu, Q. F., Zhang, Q., & Deng, J. Y. (2013). Co-design of a compact dual-band filter-antenna for WLAN application. Progress in Electromagnetics Research, 40(May), 129–139. https://doi.org/10.2528/PIERL13030411.

    Article  Google Scholar 

  25. Zhang, B., Zhang, W., Runbo, M., Zhang, X., & Mao, J. (2008). A co-design study of filters and oscillator for low phase noise and high harmonic rejection. ETRI Journal, 30(2), 344–346. https://doi.org/10.4218/etrij.08.0207.0292.

    Article  Google Scholar 

  26. Oraizi, H., & Esfahlan, M. S. (2010). Optimum design of lumped filters incorporating impedance matching by the method of least squares. Progress in Electromagnetics Research, 100, 83–103. https://doi.org/10.2528/PIER09111611.

    Article  Google Scholar 

  27. Ma, R., & Zhang, W. (2010). Co-design of dual-band low noise amplifier and band-pass filter. Asia-Pacific Symposium on Electromagnetic Compatibility, APEMC, 2010, 1378–1380. https://doi.org/10.1109/APEMC.2010.5475589.

    Article  Google Scholar 

  28. Joshi, H., & Chappell, W. J. (2006). Dual-band lumped-element bandpass filter. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4169–4177.

    Article  Google Scholar 

Download references

Acknowledgements

The authors say many thanks to the Indonesian Academy of Sciences (LIPI) Bandung for their contribution in fabricating the devices and evaluating the performance of the proposed devices.

Funding

This research is supported by the Directorate of Research and Community Service at Universitas Indonesia through Grant of International Indexed Publication (PUTI) 2020, with contract number NKB-2490/UN2.RST/HKP.05.00/2020.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the paper. The conceptualization, G.W. and M.W.; methodology, M.W.; validation, M.W., J.W., and E.W.; writing—original draft preparation, T.F., and G.W.; writing—review and editing, G.W.; supervision, G.W.; funding acquisition, G.W.

Corresponding author

Correspondence to Gunawan Wibisono.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibisono, G., Wildan, M., Wahyudi, J. et al. Co-design Structure of Dual-Band LNA and Dual-Band BPF for Radio Navigation Aid Application. Wireless Pers Commun 116, 1659–1681 (2021). https://doi.org/10.1007/s11277-020-07754-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07754-9

Keywords