Skip to main content
Log in

Analysis of Outage Probability in Wavelength Diversity Based FSO Link Under Gamma–Gamma Fading with Varying Atmospheric Attenuation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Free space optical (FSO) communication links offers an emerging alternative to RF communication links because of high speed, secure and cost-effective options to provide the last mile connectivity to end-users. They may be deployed for quick network access temporarily during link failure and natural disaster. This paper focusses on the performance of FSO communication link impaired with strong turbulence and atmospheric attenuation added through varying climatic conditions. A closed-form expression for outage probability is derived to evaluate the performance under different levels of atmospheric attenuation and turbulence strengths. The mathematical analysis clearly shows inimical effects added by atmospheric attenuation over the performance of the communication link. The impact of wavelength diversity on the outage probability of such a link is analyzed with three carrier wavelengths 1550 nm, 1310 nm and 850 nm. The simulation results with wavelength diversity for different atmospheric attenuation levels and turbulence are plotted and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Andrews, L. C., Phillips, R. L., Hopen, C. Y., & Al-Habash, M. A. (1999). Theory of optical scintillation. Journal of the Optical Society of America, 16(6), 1417–1429.

    Article  Google Scholar 

  2. Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media. Bellingham: SPIE Press.

    Book  Google Scholar 

  3. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., & Uysal, M. (2009). Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 8(2), 951–957.

    Article  Google Scholar 

  4. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: System and channel modelling with matlab. Boca Raton: CRC Press.

    Google Scholar 

  5. Immadi, G., Narayana, M., Kotamraju, S., & Madhuri, A. (2018). Estimating the performance of free space optical link under adverse weather conditions by using various models. Wireless Personal Communications, 103, 1603–1613.

    Article  Google Scholar 

  6. Jasmine, S., Robinson, S., & Malaisamy, K. (2015). Investigation on free space optical communication for various atmospheric conditions. In 2015 2nd international conference on electronics and communication systems (ICECS) (pp. 1030–1034).

  7. Kumar, N., & Sohal, H. (2014). Impact of various weather condition on the performance of free space optical communication system. Journal of Optical Communications, 0, 1–5.

    Google Scholar 

  8. Chaleshtory, Z. N., Gholami, A., Ghassemlooy, Z., & Sedghi, M. (2017). Experimental investigation of environment effects on the fso link with turbulence. IEEE Photonics Technology Letters, 29(17), 1435–1438.

    Article  Google Scholar 

  9. Malik, A., Kumar, S., Singh, P., & Kaur, P. (2018). Performance enhancement of point-to-point FSO system under rain weather conditions. Intelligent Communication, Control and Devices, Springer nature (pp. 623–631).

  10. Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H. (2003). Understanding the performance of free space optics. Journal of Optical Networking, 2(6), 178–200.

    Article  Google Scholar 

  11. Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). Ber performance of free-space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6(8), 2813–2819.

    Article  Google Scholar 

  12. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., & Uysal, M. (2008). Fso links with spatial diversity over strong atmospheric turbulence channels. In 2008 IEEE international conference on communications (pp. 5379–5384).

  13. Popoola, W., Ghassemlooy, Z., Allen, J., Leitgeb, E., & Gao, S. (2008). Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel. Optoelectronics, IET, 2, 16–23.

    Article  Google Scholar 

  14. Prabu, K., Cheepalli, S., & Kumar, D. S. (2014). Analysis of PolSK based FSO system using wavelength and time diversity over strong atmospheric turbulence with pointing errors. Optics Communications, 324, 318–323.

    Article  Google Scholar 

  15. Nistazakis, H. E., & Tombras, G. (2012). On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. Optics & Laser Technology, 44, 2088–2094.

    Article  Google Scholar 

  16. Manor, H., & Arnon, S. (2002). Performance of an optical wireless communication system as a function of wavelength. In The 22nd convention on electrical and electronics engineers in Israel, 2002, (pp. 287–289).

  17. Giggenbach, D., Wilkerson, B. L., Henniger, H., & Perlot, N. (2006). Wavelength diversity transmission for fading mitigation in the atmospheric optical communication channel. Proceedings of SPIE, 6304, 63041H–1.

    Article  Google Scholar 

  18. Balaji, K. A., & Prabu, K. (2018). Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors. Optics Communications, 410, 643–651.

    Article  Google Scholar 

  19. Srivastava, V., Mandloi, A., & Soni, G. G. (2019). Outage probability and average BER estimation of FSO system employing wavelength diversity. Optical and Quantum Electronics, 51(7), 229.

    Article  Google Scholar 

  20. Nema, S., Oza, S., Parmar, A., Shah, D., & Singh, S. (2019). Implementation of wavelength diversity technique in free-space optical link. Lecture Notes in Networks and Systems, Springer (pp. 241–251).

  21. Kaur, P., Jain, V. K., & Kar, S. (2014). Performance analysis of FSO array receivers in presence of atmospheric turbulence. IEEE Photonics Technology Letters, 26(12), 1165–1168.

    Article  Google Scholar 

  22. Shah, D., & Kothari, D. (2019). Performance analysis of free space optical link with wavelength diversity under weak and moderate turbulence conditions. Sensor Letters, 17(2), 137–143,

    Article  Google Scholar 

  23. Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710.

    Article  Google Scholar 

  24. Kim, I. I., Mcarthur, B., & Korevaar, E. J. (2001). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proceedings of SPIE 4214.

  25. Sousa, I., Queluz, M. P., & Rodrigues, A. (2017). An efficient visibility prediction framework for free-space optical systems. Wireless Personal Communications, 96(3), 3483–3498.

    Article  Google Scholar 

  26. Adamchik, V. S., & Marichev, O. I. (1990). The Algorithm for Calculating Integrals of Hypergeometric Type Functions and Its Realization in REDUCE System. ISSAC ’90.

  27. Sandalidis, H. G., Tsiftsis, T. A., Karagiannidis, G. K., & Uysal, M. (2008). Ber performance of fso links over strong atmospheric turbulence channels with pointing errors. IEEE Communications Letters, 12(1), 44–46.

    Article  Google Scholar 

  28. Liu, C., Yao, Y., Yang, Y., Yuan, Y., Zhao, Y., & Yu, B. (2013). Performance of free-space optical communication systems using circle polarization shift keying with spatial diversity receivers. Chinese Optics Letters, 11, S20101–320104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Mandloi, A. & Patel, D. Analysis of Outage Probability in Wavelength Diversity Based FSO Link Under Gamma–Gamma Fading with Varying Atmospheric Attenuation. Wireless Pers Commun 116, 1933–1947 (2021). https://doi.org/10.1007/s11277-020-07772-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07772-7

Keywords

Navigation