Skip to main content

Advertisement

Log in

Robust Power Control for 5G Small Cell Networks with Sleep Strategy

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the resource scheduling and power control strategy is studied for a two-tier 5G network system, which is comprised of a central macrocell and several small cells. Because cellular deployment is ultra dense in the 5G network, a sleep strategy for small cells is proposed to reduce energy consumption caused by the cellular overlapping coverage. Specifically, the imperfect channel state information (CSI) is considered due to the complex and dynamic communication environment in practice. This work attempts to maximize the resource utilization and enhance the robustness of the power control strategy with imperfect CSI. An optimization problem with probability constraints is formulated, and the high rate requirements of 5G network users are included. A novel method is provided to convert probability constraints into deterministic ones. An iterative algorithm of power control to enhance the network efficiency is proposed further. Finally, numerical results are given to illustrate the effectiveness of the joint resource scheduling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  2. Qamar, F., Hindia, N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643.

    Article  Google Scholar 

  3. Alsheyab, H. Y., Choudhury, S., & Bedeer, E. (2019). Near-optimal resource allocation algorithms for 5G+ cellular networks. IEEE Transactions on Vehicular Technolgy, 68(7), 6578–6592.

    Article  Google Scholar 

  4. Liu, Y., Wang, H., Peng, M., Guan, J., Xu, J., & Wang, Y. (2020). DeePGA: A privacy-preserving data aggregation game in crowdsensing via deep reinforcement learning. IEEE Internet of Things Journal, 7(5), 4113–4127.

    Article  Google Scholar 

  5. Ashraf, I., Boccardi, F., & Ho, L. (2011). Sleep mode techniques for small cell deployments. IEEE Communications Magazine, 49(8), 72–79.

    Article  Google Scholar 

  6. Soh, Y. S., Quek, T. Q. S., & Kountouris, M. (2013). Dynamic sleep mode strategies in energy efficient cellular networks. In IEEE international conference on communications (pp. 3131–3136).

  7. Bouras, C., & Diles, G. (2017). Distributed sleep mode power control in 5G ultra dense networks. In International conference on wired/wireless internet communication (pp. 65–76).

  8. Liu, C., Natarajan, B., & Xia, H. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661.

    Article  Google Scholar 

  9. Samarakoon, S., Bennis, M., & Saad, W. (2019). Energy-efficient sleep strategy with variant sleep depths for open-access femtocell networks. IEEE Communications Letters, 23(4), 780–711.

    Google Scholar 

  10. Sun, Y., & Chang, Y. (2018). Energy-efficient user association and cell sleeping strategy for multi-tier ultra-dense small cell networks. Electronic Letters, 54(12), 787–788.

    Article  Google Scholar 

  11. Wildemeersch, M., Quek, T. Q. S., & Slump, C. H. (2013). Cognitive small cell networks: Energy efficiency and trade-offs. IEEE Transactions on Communications, 61(9), 4016–4029.

    Article  Google Scholar 

  12. Zhang, W., Mallik, R., & Letaief, K. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Article  Google Scholar 

  13. Liu, Y., Peng, M., Jiang, Z., Xu, Z., Guan, J., & Yao, S. (2020). COMP: Online control mechanism for profit maximization in privacy-preserving crowdsensing. IEEE Journal on Selected Areas in Communication, 38(7), 1614–1628.

    Article  Google Scholar 

  14. Xiong, Z., Krishna, R., Cumanan, K., & Lambotharan, S. (2011). Grassmannian beamforming and null space broadcasting protocols for cognitive radio networks. IET Signal Processing, 5(5), 451–460.

    Article  MathSciNet  Google Scholar 

  15. Han, Q., Ma, K., Liu, Z., & Guan, X. (2013). Power control based on maximum power adaption in two-tier Femtocell networks. Wireless Personal Communications, 70(1), 331–351.

    Article  Google Scholar 

  16. Kim, M. S., Je, H., & Tobagi, F. A. (2010). Cross-tier interference mitigation for two-tier OFDMA femtocell networks with limited macrocell information. In IEEE global telecommunications conference (pp. 1–5).

  17. Liu, Z., Gao, L., Liu, Y., Guan, X., Ma, K., & Wang, Y. (2019). Efficient QoS support for robust resource allocation in blockchain-based Femtocell networks. IEEE Transactions on Industrial Informatics, 16(11), 7070–7080.

    Article  Google Scholar 

  18. Liu, Z., Yuan, Y., Yuan, H., & Guan, X. (2019). Allocation based on proportional-integral controller in femtocell networks with consideration of maximum power constraint. IEEE Systems Journal, 13(1), 88–97.

    Article  Google Scholar 

  19. Thakur, R., Swain, S. N., Murthy, C. S. R., & Siva Ram, C. (2018). An energy efficient cell selection framework for femtocell networks with limited backhaul link capacity. IEEE Systems Journal, 12(2), 1969–1980.

    Article  Google Scholar 

  20. LeAnh, T., Tran, N. H., Saad, W., & Walid, (2017). Matching theory for distributed user association and resource allocation in cognitive femtocell networks. IEEE Transactions on Vehicular Technolgy, 66(9), 8413–8428.

    Article  Google Scholar 

  21. Ngo, D. T., Le, L. B., & Le-Ngoc, T. (2012). Distribuated Pareto-optimal power control for utility maximization in femtocell networks. IEEE Transactions on Wireless Communications, 11(10), 3434–3446.

    Article  Google Scholar 

  22. Liu, Z., Wang, S., Liu, Y., & Wang, Y. (2018). Secrecy transmission for Femtocell networks against external eavesdropper. IEEE Transactions on Wireless Communications, 17(8), 5016–5028.

    Article  Google Scholar 

  23. Liu, Z., Li, S., Ma, K., Guan, X., & Li, X. (2017). Robust power allocation based on hierarchical game with consideration of different user requirements in two-tier femtocell networks. Computer Networks, 122, 179–190.

    Article  Google Scholar 

  24. Kim, D. I., Le, L. B., & Hossain, E. (2008). Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications, 7(12), 5517–5527.

    Article  Google Scholar 

  25. Papandriopoulos, J., & Evans, J. S. (2006). Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks. IEEE International Conference on Communications, 7, 3270–3275.

    Google Scholar 

  26. Liu, Z., Hou, G., Yuan, Y., Chan, K. Y., Ma, K., & Guan, X. (2020). Robust resource allocation in two-tier NOMA heterogeneous networks toward 5G. Computer Networks, 176, 107299.

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 61873223, 61803328), Natural Science Foundation of Hebei Province (Grant No. F2019203095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

In this part, the uncertain constraint is transformed into the certainty expression. Consider the transmission rate constraint,

$$\begin{aligned} \text {Pr}\{R_{i,j} \le R_0 \} \le \varepsilon _{i,j}. \end{aligned}$$
(18)

Namely,

$$\begin{aligned} \text {Pr}\{W \log _2\left( 1+\frac{p_{i,j}G_{i,j}{{\overline{g}}}_{i,j}}{I_{i,j}}\right) \le R_0 \} \le \varepsilon _{i,j}. \end{aligned}$$
(19)

where \({{\overline{g}}}_{i,j}\) is the average gain. \(I_{i,j}\) is the total interference. The value of \(I_{i,j}\) is

$$\begin{aligned} I_{i,j}=\sum _{(m,n)\ne (i,j)}p_{m,n}{g}_{m,n}+N_0 \end{aligned}$$
(20)

\(G_{i,j}\) is assumed to be exponential distribution with unit mean.

According to (6), (19) can be transformed into

$$\begin{aligned} \begin{array}{lll} &{} \text {Pr} \{ G_{i,j}<\frac{(2^{\frac{R_0}{W}}-1)(I_{i,j}+N_0)}{ {{\overline{g}}}_{i,j}p_{i,j}}\}, \\ &{}\quad =\int _{0}^{\frac{(2^{\frac{R_0}{W}}-1)(I_{i,j}+N_0)}{ {{\overline{g}}}_{i,j}p_{i,j}}}e^{-x}dx,\\ &{}\quad =1-e^{-\frac{(2^{\frac{R_0}{W}}-1)(I_{i,j}+N_0)}{ {{\overline{g}}}_{i,j}p_{i,j}}}. \end{array} \end{aligned}$$
(21)

The probabilistic constraint of optimal problem can be rewritten as follows

$$\begin{aligned} \begin{array}{lll} &{}\text {Pr}\{R_{i,j} \le R_0 \} \le \varepsilon _{i,j},\\ &{}\quad \Rightarrow 1-e^{-\frac{\left( 2^{\frac{R_0}{W}}-1\right) (I_{i,j}+N_0)}{{{\overline{g}}}_{i,j}p_{i,j}}}\le \varepsilon _{i,j},\\ &{}\quad \Rightarrow \ln (1-\varepsilon _{i,j})\le -\frac{\left( 2^{\frac{R_0}{W}}-1\right) (I_{i,j}+N_0)}{ {{\overline{g}}}_{i,j}p_{i,j}},\\ &{}\quad \Rightarrow {{\overline{g}}}_{i,j}p_{i,j} \ln (1-\varepsilon _{i,j})+(2^{\frac{R_0}{W}}-1)\left( \sum _{(m,n)\ne (i,j)}p_{m,n}{g}_{m,n}+N_0\right) \le 0 \end{array} \end{aligned}$$
(22)

The proof is completed.

Appendix 2

In this section, the detailed process of obtaining optimal power is given.

$$\begin{aligned} L(p,\lambda )\!= & {} \!\sum \limits _{i,j=1}^{n} (R_{i,j}\!-\!c*p_{i,j})\!\!-\!\!\sum \limits _{k=i,j}\lambda _k \left( {{\overline{g}}}_{i,j}p_{i,j} \ln (1\!-\!\varepsilon _{i,j})\!\!\nonumber \right. \\&\left. +\left( 2^{\frac{R_0}{W}}\!-\!1\right) \left( \sum _{(m,n)\ne (i,j)}p_{m,n}{g}_{m,n}\!+\!N_0\right) \right) . \end{aligned}$$
(23)

Namely,

$$\begin{aligned} \begin{array}{cl} \ L(p,\lambda )= &{}\sum \limits _{i,j=1}^{n} \left( \alpha W \log _2\left( \frac{{g}_{i,j}e^{{{\widetilde{p}}}_{i,j}}}{\sum _{(m,n)\ne (i,j)}{p}_{m,n}{g}_{m,n}^j+N_0}\right) +\beta -c*e^{{{\widetilde{p}}}_{i,j}}\right) \\ &{}-\sum \limits _{k=i,j}\lambda _k ({{\overline{g}}}_{i,j}e^{{{\widetilde{p}}}_{i,j}}) \ln (1-\varepsilon _{i,j})+(2^{\frac{R_0}{W}}-1)\left( \sum _{(m,n)\ne (i,j)}p_{m,n}{g}_{m,n}+N_0\right) ).\\ \end{array} \end{aligned}$$
(24)

In order to make it convenient to obtain the derivative, we separate the (ij)th term including \({{\widetilde{p}}}_{i,j}\) and other terms. The Lagrangian function is rewritten as follows.

$$\begin{aligned} \begin{array}{cl} \ L(p,\lambda )=&{}\alpha W\log _2\left( 1+\frac{{g}_{i,j}e^{{{\widetilde{p}}}_{i,j}}}{\sum _{(m,n)\ne (i,j)}p_{m,n}{g}_{m,n}^j+N_0}\right) +\beta -c*e^{{{\widetilde{p}}}_{i,j}}\\ &{} +\sum \limits _{m,n} \left( \alpha W \log _2\left( \frac{{g}_{m,n}{p}_{m,n}}{e^{{{\widetilde{p}}}_{i,j}}{g}_{i,j}+\sum _{(m,n)\ne (i,j)}{p}_{a,b}{g}_{a,b}+N_0}\right) +\beta -c*{p}_{m,n}\right) \\ &{} -\lambda _k ({{\overline{g}}}_{i,j}e^{{{\widetilde{p}}}_{i,j}} \ln (1-\varepsilon _{i,j})+(2^{\frac{R_0}{W}}-1)({I}_{i,j}+N_0))\\ &{}-\sum \limits _{k\ne i,j}\lambda _k ({{\overline{g}}}_{m,n}p_{m,n} \ln (1-\varepsilon _{i,j})+(2^{\frac{R_0}{W}}-1)({I}_{m,n}+e^{{{\widetilde{p}}}_{i,j}}{g}_{i,j}+N_0)) \end{array} \end{aligned}$$
(25)

After simplification, the derivative of (25) about \({{{\widetilde{p}}}_{ij}}\) is given as follows

$$\begin{aligned} L'(p,\lambda )\!= & {} \!\frac{\alpha }{\ln 2}\!-\!e^{{{\widetilde{p}}}_{i,j}}\left( c\!+\!\sum \limits _{m,n}(\frac{\alpha }{\ln 2} \frac{{g}_{i,j}}{{p}_{m,n}{g}_{m,n}} SIR(e^{{{\widetilde{p}}}_{i,j}}))\!\!\nonumber \right. \\&\left. +\lambda _k {{\overline{g}}}_{i,j}\ln (1\!-\!\varepsilon _{i,j})\!\!+\!\!\sum \limits _{k\ne i,j}\lambda _k({g}_{i,j}(2^{\frac{R_0}{W}}\!\!-\!\!1))\right) \end{aligned}$$
(26)

where

$$\begin{aligned} \ SIR(e^{{{\widetilde{p}}}_{i,j}})=\frac{{g}_{m,n}{p}_{m,n}}{({e^{{{\widetilde{p}}}_{i,j}}{g}_{i,j} +\sum _{(m,n)\ne (i,j)}{p}_{a,b}{g}_{a,b}+N_0})^2}. \end{aligned}$$
(27)

Let (26) be zero, we have

$$\begin{aligned}&\frac{\alpha }{\ln 2}\!-\!e^{{{\widetilde{p}}}_{i,j}}\left( c\!\!+\!\!\sum \limits _{m,n}(\frac{\alpha }{\ln 2} \frac{{g}_{i,j}}{{p}_{m,n}{g}_{m,n}} SIR(e^{{{\widetilde{p}}}_{i,j}})\right) \!\nonumber \\&\quad +\!\lambda _k {{\overline{g}}}_{i,j}\ln (1\!\!-\!\!\varepsilon _{i,j})\!+\!\sum \limits _{k\ne i,j}\lambda _k({g}_{i,j}(2^{\frac{R_0}{W}}\!\!-\!\!1)))\!=\!0. \end{aligned}$$
(28)

We can get the optimal power and the iteration of Lagrangian multiplier as follows

$$\begin{aligned} {p}_{i,j}^*= & {} e^{{{\widetilde{p}}}_{i,j}}\!=\!\frac{\frac{\alpha }{\ln 2}}{c\!\!+\!\!\sum \limits _{m,n}\left( \frac{\alpha }{\ln 2} \frac{{g}_{i,j}}{{p}_{m,n}{g}_{m,n}} SIR(e^{{{\widetilde{p}}}_{i,j}})\right) \!\!+\!\!\lambda _k {{\overline{g}}}_{i,j}\ln (1\!-\!\varepsilon _{i,j})\!\!+\!\!\sum \limits _{k\ne i,j}\lambda _k\left( {g}_{i,j}(2^{\frac{R_0}{W}}\!\!-\!\!1)\right) },\end{aligned}$$
(29)
$$\begin{aligned} \ \mathop {\lambda _k} \limits _{k=i,j}= & {} {{\overline{g}}}_{i,j}{p}_{i,j}\ln (1-\varepsilon _{i,j})+(2^{\frac{R_0}{W}}-1))({I}_{i,j}+N_0). \end{aligned}$$
(30)

The solution is achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, J., Yuan, Y. et al. Robust Power Control for 5G Small Cell Networks with Sleep Strategy. Wireless Pers Commun 116, 2205–2222 (2021). https://doi.org/10.1007/s11277-020-07787-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07787-0

Keywords

Navigation