Abstract
Ensuring security in a communication network is one of the underlying challenges of wireless sensor network due to critical operational constraints. Wireless sensor network (WSN) is an easy target of malware (worm, virus, malicious code, etc.) attacks due to weak security mechanism. Malware propagation outsets from a compromised sensor node and spreads in the whole WSN using wireless communication. Owing to epidemic nature of worm transmission in the network, it is essential to implement a defence mechanism against worm attacks. Motivated by malware quarantine, we propose an improved mathematical model which aggregates quarantine and vaccination techniques. We obtain the equilibrium points and other crucial parameters of the proposed model. We analyse the system stability under different conditions. Basic reproduction number determines whether malware is extinct in the system or not. It helps in the calculation of cutoff limit of the node density and communication radius. The impingement of various parameters in this model is analysed. The performance is observed to be significantly ameliorated than existing models and verified by extensive simulation results in terms of reducing the number of infectious nodes and decreasing the rate of malware propagation.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig19_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig20_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig21_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig22_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig23_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-020-07809-x/MediaObjects/11277_2020_7809_Fig24_HTML.png)
Similar content being viewed by others
References
Yuan, F., Zhan, Y., & Wang, Y. (2014). Data density correlation degree clustering method for data aggregation in WSN. IEEE Sensors Journal, 14(4), 1089–1098.
Pal, R., Gupta, N., Prakash, A., & Tripathi, R. (2018). Adaptive Mobility and Range Based Clustering Dependent MAC Protocol for vehicular ad-hoc networks. Wireless Personal Communications, 98(1), 1155–1170.
Mukherjee, S., Ray, R., Samanta, R., Khondekar, M. H., & Sanyal, G. (2017). Nonlinearity and chaos in wireless network traffic. Chaos Solitons & Fractals, 96, 23–29.
Wei, C., Chen, P., Han, Y. S., & Varshney, P. K. (2017). Local threshold design for target localization using error correcting codes in wireless sensor networks in the presence of Byzantine attacks. In IEEE transactions on information forensics and security (Vol. 12, No. 7, pp. 1571–1584).
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
Singh, S. P. & Sharma, S. C. (2018). A PSO based improved localization algorithm for wireless sensor network. Wireless Personal Communications, 98(1), 487–503.
Bhushan, B., & Sahoo, G. (2018). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037–2077.
Tang, S., & Mark, B. L. (2009). Analysis of virus spread in wireless sensor networks: An epidemic model. In 2009 7th international workshop on design of reliable communication networks (pp. 86–91). IEEE, Washington DC.
Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111.
Shakya, R. K., Rana, K., et al. (2019). Stability analysis of epidemic modeling based on spatial correlation for wireless sensor networks. Wireless Personal Communications, 108, 1363–1377.
Khayam, S. A., & Radha, H. (2005). A topologically-aware worm propagation model for wireless sensor networks. In 25th IEEE international conference on distributed computing systems workshops (pp. 210–216). Columbus: IEEE.
Khayam, S. A., & Radha, H. (2006). Using signal processing techniques to model worm propagation over wireless sensor networks. IEEE Signal Processing Magazine, 23(2), 164–169.
De, P., Liu, Y., & Das, S. K. (2006). Modeling node compromise spread in wireless sensor networks using epidemic theory. In Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks (pp. 237–243). IEEE Computer Society, Washington, DC, USA.
De, P., Liu, Y., & Das, S. K. (2009). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425.
Ko, Y. M., & Gautam, N. (2011). Epidemic-based information dissemination in wireless mobile sensor networks. IEEE/ACM Transactions on Networking, 18(6), 1738–1751.
Ojha, R. P., Srivastava, P. K., Shashank, A., & Sanyal G. (2017). Global stability of dynamic model for worm propagation in wireless sensor network. In Proceeding of international conference on intelligent communication, control and devices (pp. 695–704). Springer Singapore.
Byun, H., & So, J. (2016). Node scheduling control inspired by epidemic theory for data dissemination in wireless sensor-actuator networks with delay constraints. IEEE Transactions on Wireless Communications, 15(3), 1794–1807.
Shen, S., Huang, L., Liu, J., Champion, A. C., Yu, S., & Cao, Q. (2016). Reliability evaluation for clustered WSNs under malware propagation. Sensors, 16(6), 24:1–24:33.
Tang, S. (2011). A modified epidemic model for virus spread control in wireless sensor networks. In 2011 IEEE global telecommunications conference-GLOBECOM 2011 (pp. 1–5).
Tang, S. (2011). A modified SI epidemic model for combating virus spread in wireless sensor networks. International Journal of Wireless Information Networks, 18(4), 319–326.
Tang, S., David, M., & Jason, Y. (2013). Modified SIS epidemic model for analysis of virus spread in wireless sensor networks. International Journal of Wireless and Mobile Computing, 6(2), 99–108.
Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. The Royal Society, 115(772), 700–721.
Hayel, Y., & Zhu, Q. (2017). Epidemic protection over heterogeneous networks using evolutionary Poisson games. IEEE Transactions on Information Forensics and Security, 12(8), 1786–1800.
Wang, T., Wu, Q., Wen, S., Cai, Y., Tian, H., Chen, Y., et al. (2017). Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors, 17(12), 1–17.
Tianrui, Z., Lu-Xing, Y., Xiaofan, Y., Yingbo, W., & Yuan, Yan T. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260.
Upadhyay, R. K., Kumari, S., & Misra, A. K. (2017). Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing, 54(1), 485–509.
He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., & Li, Y. (2017). Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Transactions on Vehicular Technology, 66(3), 2789–2800.
Wang, Y., Wen, S., Xiang, Y., & Zhou, W. (2014). Modeling the propagation of worms in networks: A survey. IEEE Communications Surveys Tutorials, 16(2), 942–960.
Yu, S., Gu, G., Barnawi, A., Guo, S., & Stojmenovic, I. (2015). Malware propagation in large-scale networks. IEEE Transactions on Knowledge and Data Engineering, 27(1), 170–179.
Yuan, P., & Liu, P. (2015). Data fusion prolongs the lifetime of mobile sensing networks. Journal of Network and Computer Applications, 49, 51–59.
Ya-Qi, W., & Xiao-Yuan, Y. (2013). Virus spreading in wireless sensor networks with a medium access control mechanism. Chinese Physics B, 22(4), 040206.
Wang, X., & Li, Y. (2009). An improved SIR model for analyzing the dynamics of worm propagation in wireless sensor networks. Chinese Journal of Electronics, 18(1), 8–12.
Wang, Xiaoming Li, & Qiaoliang, & Li, Yingshu,. (2010). EiSIRS: A formal model to analyze the dynamics of worm propagation in wireless sensor networks. Journal of Combinatorial Optimization, 20(1), 47–62.
Tang, S., & Li, W. (2011). An epidemic model with adaptive virus spread control for wireless sensor networks. International Journal of Network Security, 6(4), 201–210.
De, P., Liu, Y., & Das, S. K. (2009). Deployment-aware modeling of node compromise spread in wireless sensor networks using epidemic theory. ACM Transactions on Sensor Networks, 5(3), 23:1–23:33.
Shen, S., Li, H., Han, R., Vasilakos, A. V., Wang, Y., & Cao, Q. (2014). Differential game-based strategies for preventing malware propagation in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 9(11), 1962–1973.
Guiyun, L., Baihao, P., Xiaojing, Z., & Xuejing, L. (2020). Differential games of rechargeable wireless sensor networks against malicious programs based on SILRD propagation model. Complexity, 2020, 1–13.
Di Pietro, R., & Verde, N. V. (2013). Epidemic theory and data survivability in unattended wireless sensor networks: Models and gaps. Pervasive and Mobile Computing, 9(4), 588–597.
Aliberti, Giulio, Di Pietro, Roberto, & Guarino, Stefano. (2017). Epidemic data survivability in unattended wireless sensor networks: New models and results. Journal of Network and Computer Applications, 99, 146–165.
Sayad Haghighi, M., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(12), 2854–2865.
Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor network. Mathematical Problems in Engineering, 2015, 1–8.
Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2019). Improving wireless sensor networks performance through epidemic model. International Journal of Electronics, 106(6), 862–879.
Khanh, N. H. (2016). Dynamics of a worm propagation model with quarantine in wireless sensor networks. Applied Mathematics & Information Sciences, 10, 1739–1746.
Ojha, R. P., Sanyal, G., Srivastava, P. K., & Sharma, K. (2017). Design and analysis of modified SIQRS model for performance study of wireless sensor network. Scalable Computing: Practice and Experience, 18, 229–242.
Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2018). Pre-vaccination and quarantine approach for defense against worms propagation of malicious objects in wireless sensor networks. Sensor Technology: Concepts, Methodologies, Tools, and Applications, 9(1), 1–20.
Singh, A., Awasthi, A. K., Singh, K., & Srivastava, P. K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communications, 98(3), 2535–2551.
van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1), 29–48.
La Salle, J. (1976). The stability of dynamical systems. Philadelphia: Society for Industrial and Applied Mathematics.
Zhao, J. (2017). On resilience and connectivity of secure wireless sensor networks under node capture attacks. IEEE Transactions on Information Forensics and Security, 12(3), 557–571.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ojha, R.P., Srivastava, P.K., Sanyal, G. et al. Improved Model for the Stability Analysis of Wireless Sensor Network Against Malware Attacks. Wireless Pers Commun 116, 2525–2548 (2021). https://doi.org/10.1007/s11277-020-07809-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-020-07809-x