Skip to main content

Advertisement

Log in

Terahertz Parametric Real-Time Imaging of Jade Stone by Terasense

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The absence of an inspection technique for the jadestone internal structure is a significant problem for identifying density and structure inside a stone. A terahertz (THz) parametric real-time imaging method is applied for precise measurement. Involution of THz imaging system not just for medical, food, security scanning, can also be used for testing a different kind of material, finding impurities inside it detection of varying density of jadestone. Our developed THz system investigated 2D and 3D images of various types of jadestone. For a detailed study of inner structure and density inspection, this system defines the use of polarization in THz for parametric imaging. THz technology is useful in detecting jadestone, different material compositions, and density of the jadestone. This system is developed for the detection of jadestone, its internal structure, and define its value. All determinations completed by the Terasense system and MATLAB analysis that are in right compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., et al. (2010). Terahertz imaging: Applications and perspectives. Applied Optics, 49(19), E48–E57.

    Article  Google Scholar 

  2. Appleby, R., Robertson, D. A., & Wikner, D. (2017) Millimeter wave imaging: a historical review. In Proceedings of volume 10189, passive and active millimeter-wave imaging XX, 10189, SPIE defense + security, Anaheim, CA, USA, 9–13 April 2017; Wikner, D.A., Robertson, D.A., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 1018902.

  3. Wang, X., Cui, Y., Sun, W., Ye, J., & Zhang, Y. (2010). Terahertz polarization real-time imaging based on balanced electro-optic detection. JOSA A, 27(11), 2387–2393.

    Article  Google Scholar 

  4. Schecklman, S., Zurk, L. M., Henry, S., & Kniffin, G. P. (2011). Terahertz material detection from diffuse surface scattering. Journal of Applied Physics, 109, 094902.

    Article  Google Scholar 

  5. Mittleman, D. M. (2018). Twenty years of terahertz imaging. Optics Express, 26, 9417.

    Article  Google Scholar 

  6. Perraud, J. B., Guillet, J. P., Redon, O., Hamdi, M., Simoens, F., & Mounaix, P. (2019). Shape-from-focus for real-time terahertz 3D imaging. Optics Letters, 44(3), 483–486.

    Article  Google Scholar 

  7. Liu, W. W., et al. (2015). Realization of broadband cross-polarization conversion in transmission mode in the Terahertz region using a single layer metasurface. Optics Letters, 40, 3185.

    Article  Google Scholar 

  8. Wang, X., Cui, Y., Hu, D., Sun, W., Ye, J., & Zhang, Y. (2009). Terahertz quasi-near-field real-time imaging. Optics Communication, 282, 4683–4687.

    Article  Google Scholar 

  9. Zeng, N., He, Y. H., & Ma, H. (2008). Imaging and analyzing subsurface morphologies of jade objects with optical coherence tomography. Optics and Precision Engineering, 7, 1335–1342.

    Google Scholar 

  10. Wang, W., Yadav, N. P., Shen, Z., et al. (2018). Two-stage magnifying hyper lens structure based on metamaterials for super-resolution imaging. Optik, 174, 199–206.

    Article  Google Scholar 

  11. Wang, W., De La Rue, R. M., Yadav, N. P., et al. (2019). Analysis on image features for a standard edge by using polarization indirect microscopic system. Optik, 178, 363–371.

    Article  Google Scholar 

  12. Wang, W., Yadav, N. P., Cao, Y., et al. (2019). Finger skin super-resolved imaging based on extracting polarized light field. Optik, 180, 215–219.

    Article  Google Scholar 

  13. Abramovich, A., Kopeika, N. S., Rozban, D., & Farber, E. (2007). Inexpensive detector for terahertz imaging. Applied Optics, 46(29), 7207–7211.

    Article  Google Scholar 

  14. Van der Valk, N. C., van der Marel, W. A., & Planken, P. C. (2005). Terahertz polarization imaging. Optics Letters, 30(20), 2802–2804.

    Article  Google Scholar 

  15. Liu, X., Qiu, B., Chen, Q., Ni, Z., Jiang, Y., Long, M., et al. (2014). Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging. Optics Express, 22, 20446–20456.

    Article  Google Scholar 

  16. Grady, K. N., et al. (2013). Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304.

    Article  Google Scholar 

  17. Blanchard, F., Doi, A., Tanaka, T., Hirori, H., Tanaka, H., Kadoya, Y., et al. (2011). Real-time terahertz near-field microscope. Optics Express, 19, 8277–8284.

    Article  Google Scholar 

  18. Rodika T. (2018). Meaning of Jade in Feng Shui and alternative healing. https://www.thespruce.com/jade-meaning-ancient-strength-and-serenity-1274373.

  19. Ding, X. M., et al. (2015). Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 27, 1195–1200.

    Article  Google Scholar 

  20. Feng, X., Su, R., Happonen, T., Liu, J., & Leach, R. (2018). Fast and cost-effective in-process defect inspection for printed electronics based on coherent optical processing. Optics Express, 26, 13927–13937.

    Article  Google Scholar 

  21. Yadav, N., Wang, W., Ullah, K., & Liu, X. (2018). Polarization parametric indirect microscopic imaging for patterned device line edge inspection. Applied Physics B, 124(8), 167.

    Article  Google Scholar 

  22. Cao, Y., Xiong, J., Liu, X., Xia, Z., Weize Wang, N. P., & Yadav, W. L. (2019). Sensing of ultrasonic fields based on polarization parametric indirect microscopic imaging. Chinese Optics Letters, 17(4), 041702.

    Article  Google Scholar 

  23. Ullah, K., Garcia-Camara, B., Habib, M., Yadav, N. P., & Liu, X. (2018). An indirect method of imaging the stokes-parameter of a submicron particle with sub-diffraction scattering. Journal of Quantitative Spectroscopy and Radioactive Transfer, 213, 35–40.

    Article  Google Scholar 

  24. Ullah, K., Liu, X., Habib, M., Lepeshov, S., Garcia-Camara, B., Krasnok, A., et al. (2018). Chiral all-dielectric trimer nanoantenna. Journal of Quantitative Spectroscopy & Radiative Transfer, 208, 71–77.

    Article  Google Scholar 

  25. Ullah, K., Liu, X., Yadav, N. P., Habib, M., Song, L., & García-Cámara, B. (2017). Light scattering by sub wavelength Cu2O particle. Nanotechnology, 28(13), 1–9.

    Google Scholar 

  26. Koch, M., Hunsche, S., Schumacher, P., Nuss, M. C., Feldmann, J., & Fromm, J. (1998). THz-imaging: A new method for density mapping of wood. Wood Science and Technology, 32(6), 421–427.

    Article  Google Scholar 

  27. Ullah, K., Liu, X., Jichuan, X., Hao, J., Xu, B., Jun, Z., et al. (2017). A polarization parametric method of sensing the scattering signals from a submicrometer particle. IEEE Photonics Technology Letters, 29(1), 19–22.

    Article  Google Scholar 

  28. Kawase, K., Ogawa, Y., Watanabe, Y., & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express, 11(20), 2549–2554.

    Article  Google Scholar 

  29. Hor, Y. L., Federici, J. F., & Wample, R. L. (2008). Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging. Applied Optics, 47(1), 72–78.

    Article  Google Scholar 

  30. Hung, Y. C., & Yang, S. H. (2019). Terahertz deep learning computed tomography. In 2019 44th international conference on infrared, millimeter, and terahertz waves (IRMMW-THz) (pp. 1–2). IEEE.

  31. Yuan, H., Voß, D., Lisauskas, A., Li, F., & Roskos, H. G. (2019). Fourier imaging with CW terahertz waves. In Terahertz emitters, receivers, and applications X (Vol. 11124, p. 1112411). International Society for Optics and Photonics.

Download references

Acknowledgements

The authors wish to acknowledge the financial support by special project for guiding local science and technology development (2018ZYYD006) and Hubei Polytechnic University Laboratory fund (19XJK24R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nagendra P. Yadav or Guozhen Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N.P., Kumar, A. & Hu, G. Terahertz Parametric Real-Time Imaging of Jade Stone by Terasense. Wireless Pers Commun 116, 2899–2911 (2021). https://doi.org/10.1007/s11277-020-07826-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07826-w

Keywords

Navigation