Skip to main content

Advertisement

Log in

ZF and MMSE Detectors Performances of a Massive MIMO System Combined with OFDM and M-QAM Modulation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a least squares channel estimation (LSCE) in the UpLink transmission for a Massive MIMO systems in 5G wireless communications, combined with Orthogonal Frequency Division Multiplexing and higher-order M-QAM modulation. The Mean Square Error (MSE) of the LSCE is computed, and the performance of ZF, MMSE and V-BLAST detectors is also evaluated. Using 128-QAM modulation (i.e., increasing the noise system sensibility) with 1024 subcarriers and increasing the Base Station antennas array decreases more the Bit Error Rate (BER) for the ZF, MMSE and V-BLAST detectors with respect to the MSE. The performance degradation both ZF and MMSE compared to V-BLAST is negligible in a high receive antennas; hence, faster data rates and higher spectral efficiency levels for the communication systems. Consequently, the ZF, MMSE and V-BLAST detectors achieve a better BER with respect to channel estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  2. Riadi, A., Boulouird, M., & Hassani, M. M. (2017). An overview of massive-MIMO in 5G wireless communications. In Colloque international TELECOM 2017 & 10mes JFMMA, EMI—Rabat, Morocco, Mai (pp. 10–12).

  3. Magueta, R., Castanheira, D., Silva, A., Dinis, R., & Gameiro, A. (2017). Hybrid iterative space-time equalization for multi-user mmW massive MIMO systems. IEEE Transactions on Communications, 65(2), 608–620.

    Article  Google Scholar 

  4. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  5. Van Chien, T., & Björnson, E. (2017). 5G mobile communications (pp. 77–116). Berlin: Springer.

    Book  Google Scholar 

  6. Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  7. Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO 5G system. IEEE Communications Surveys and Tutorials, 18(2), 905–923.

    Article  Google Scholar 

  8. Boulouird, M., Riadi, A., & Hassani, M. M. (Nov. 2017). Pilot contamination in multi-cell massive-MIMO systems in 5G wireless communications. In 2017 International conference on electrical and information technologies (ICEIT)—Rabat, Morocco (pp. 15–18).

  9. Belhabib, A., Boulouird, M., & Hassani, M. M. (February 2018). Pilot contamination in a massive MIMO multi-cell environment of 5G communication systems. In 4ème Edition de la Journée de la Recherche Scientifique—JRS’2018, Marrakesh, Morocco.

  10. Yang, S., & Hanzo, L. (2015). Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Communications Surveys and Tutorials, 17(4), 1941–1988.

    Article  Google Scholar 

  11. Chen, J.-C. (2017). A low complexity data detection algorithm for uplink multiuser massive MIMO systems. IEEE Journal on Selected Areas in Communications, 35(8), 1701–1714.

    Article  Google Scholar 

  12. Nguyen, T.-B., Nguyen, T.-D., Le, M.-T., & Ngo, V.-D. (2017). Efficiency zero-forcing detectors based on group detection for massive MIMO systems. In 2017 international conference on advanced technologies for communications (ATC) (pp. 48–53).

  13. Golden, G. D., Foschini, G. J., Valenzuela, R. A., & Wolniansky, P. W. (1999). Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters, 35(1), 14–16.

    Article  Google Scholar 

  14. Nan, Y., Sun, X., & Zhang, L. (2016). Joint channel estimation algorithm via weighted Homotopy for massive MIMO OFDM system. Digital Signal Processing, 50, 34–42.

    Article  Google Scholar 

  15. Pfau, T., Hoffmann, S., & Noé, R. (2009). Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for \(M\)-QAM constellations. Journal of Lightwave Technology, 27(8), 989–999.

    Article  Google Scholar 

  16. Riadi, A., Boulouird, M., & Hassani, M. M. (2020). Least squares channel estimation of an OFDM massive MIMO system for 5G wireless communications. In: M. Bouhlel & S. Rovetta (Eds.), Proceedings of the 8th international conference on sciences of electronics, technologies of information and telecommunications (SETIT’18), vol. 2. SETIT 2018. Smart innovation, systems and technologies, vol. 147. Cham: Springer. https://doi.org/10.1007/978-3-030-21009-0_43.

  17. Riadi, A., Boulouird, M., & Hassani, M. M. (2019). Performance of massive-MIMO OFDM system with M-QAM modulation based on LS channel estimation. In 2019 international conference on advanced systems and emergent technologies (IC-ASET) (pp. 19–22). Tunisia: Hammamet.

  18. Riadi, A., Boulouird, M. & Hassani, M. M. (April 2019). ZF/MMSE and OSIC detectors for uplink OFDM massive MIMO systems. In 2019 IEEE jordan international joint conference on electrical engineering and information technology (JEEIT) (pp. 9–11). Jordan: Amman.

  19. Mustika, I. W., & Qomarrullah, R. (2017). Performance evaluation of MIMO-OFDM system using quadrature amplitude modulation based on SDR platform. In 2017 7th international annual engineering seminar (InAES) (pp. 1–6).

  20. Zhang, Y. J., & Letaief, K. B. (2005). An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems. IEEE Transactions on Communications, 53(1), 107–116.

    Article  Google Scholar 

  21. Konguvel, E., & Kannan, M. (2018). A survey on FFT/IFFT processors for next generation telecommunication systems. Journal of Circuits, Systems and Computers, 27(3), 1830001.

    Article  Google Scholar 

  22. Moradi, A., Bakhshi, H., & Najafpoor, V. (2011). Pilot placement for time-varying MIMO OFDM channels with virtual subcarriers. Communications and Network, 3(1), 31.

    Article  Google Scholar 

  23. Barhumi, I., Leus, G., & Moonen, M. (2003). Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing, 51(6), 1615–1624.

    Article  Google Scholar 

  24. Cantrell, C. D. (2000). Modern mathematical methods for physicists and engineers. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Tung, T.-L., Yao, K., & Hudson, R. E. (2001). Channel estimation and adaptive power allocation for performance and capacity improvement of multiple-antenna OFDM systems. In 2001 IEEE third workshop on signal processing advances in wireless communications, 2001 (SPAWC’01) (pp. 82–85).

  26. Chockalingam, A., & Rajan, B. S. (2014). Large MIMO systems. Cambridge: Cambridge University Press.

    Google Scholar 

  27. Rajeev, P., Prabhat, A., & Norsang, L. (2014). Sphere detection technique: An optimum detection scheme for MIMO system. International Journal of Computer Applications, 100(2).

  28. Foschini, G. J., et al. (1999). Simplified processing for high spectral efficiency Wireless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communications, 17, 1841–1852.

    Article  Google Scholar 

  29. Cui, T., Tellambura, C., & Yue, W. (2008). Constrained Detection for Spatial-Multiplexing Multiple-Input Multiple-Output Systems. IEEE Transactions on Vehicular Technology, 57(3), 1537–1547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boulouird.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riadi, A., Boulouird, M. & Hassani, M.M. ZF and MMSE Detectors Performances of a Massive MIMO System Combined with OFDM and M-QAM Modulation. Wireless Pers Commun 116, 3261–3276 (2021). https://doi.org/10.1007/s11277-020-07848-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07848-4

Keywords

Navigation