Skip to main content
Log in

Implementation of Downlink Physical Channel Processing Architecture for NB-IoT Using LTE/5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The monumental success over the years, in wireless communication and mobile communication have overcome the challenges such as fading, multipath, interferences and spectrum limitations due to the advancement in the communication system with higher peak data rate with reduced latency thus most of research work are being focused from long term evolution (LTE) along with reduced delay, area and power consumption. Narrowband Internet of Things (NB-IoT) is an emerging domain with a vast range of applications. The conventional NB-IoT network uses orthogonal frequency division multiplexing (OFDM) for data transmission over the communication channel. LTE downlink physical layer has three control channels which are PCFICH, PDCCH, and PHICH uses in channel processing. The processing step involves scrambling, modulation, layer mapping, precoding and resource element mapping at the transmitter. The receiver end comprising of demapping from the source elements and detection of data occurs in physical downlink channels of LTE. 5G will make sure that, one can download an app of any MB in size at greater speed when compared with existing system. The entire scheme has been simulated using Model sim and realized in Plan Ahead Tool in Virtex 5 tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ghosh, A., Maeder, A., Baker, M., & Chandramouli, D. (2019). 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. Computer Science, IEEE Access, 7, 127639–127651.

    Article  Google Scholar 

  2. He, K., Wang, Z., Li, D., Zhu, F., & Fan, L. (2020). Ultra-reliable MU-MIMO detector based on deep learning for 5G/B5G-enabled IoT. Journal of Wireless Communication, 43, 101–181.

    Google Scholar 

  3. Serghiou, D., Khalily, M., Singh, V., Araghi, A., & Tafazolli, R. (2020), Sub-6 GHz dual-band 8x8 MIMO antenna for 5G smart phones. IEEE Antennas and Wave Propagation Letters, 19, 99.

  4. Brdulak, A. (2020). Characteristics of narrowband IoT (NB-IoT) technology that supports smart city management based on the chosen use cases from the environment area. Journal of Decision Systems, 29, 1–8.

  5. Sadek, A. M., Li, Yu., Chen, S., & Lin, F. (2020). On improved DFT-based low-complexity channel estimation algorithms for LTE-based uplink NB-IoT systems. Journal of Computer Communications, 149, 214–224.

    Article  Google Scholar 

  6. Feltrin, L., Tsoukaneri, G., Condoluci, M., Buratti, C., Mahmoodi, T., Dohler, M., & Verdone, R. (2019). Narrowband IoT: A survey on downlink and uplink perspectives. IEEE Transactions on Wireless Communications, 26(1), 78–86.

    Article  Google Scholar 

  7. Gui, R., Naveen, M. B., & Lutz, L. (2020). Connectivity performance evaluation for grant-free narrowband IoT with widely linear receivers. IEEE Journal of Internet of Things, (99):1–1.

  8. Abdel-Atty, H. M., Raslan, W. A., & Khalil, A. T. (2020). Evaluation and analysis of FBMC/OQAM systems based on pulse shaping filters. IEEE Access, 8, 55750–55772.

    Article  Google Scholar 

  9. Wang, H., Du, W., Wang, X., Yu, G., & Xu, L. (2020). Channel estimation performance analysis of FBMC/OQAM systems with bayesian approach for 5G-enabled IoT applications. Journal of Wireless Communications and Mobile Computing, 20, 1–9.

  10. Ling, Z., Zhou, X., Chen, L., & Y., & Yang, Y. . (2019). Novel RAPF scheme and its performance of PAPR reduction and BER in FBMC-OQAM system. IET Communications, 13(13), 1916–1920.

    Article  Google Scholar 

  11. Hanprasitkum, A., Numsomran, A., Boonsrimuang, P., & Boonsrimuang, P. (2017), Improved PTS method with new weighting factor technique for FBMC-OQAM systems. In IEEE International Conference on Advanced Communication Technology (ICACT) (pp. 143–147).

  12. Chung, W., Kim, C., Choi, S., & Hong, D. (2016). Synchronization sequence design for FBMC/OQAM systems. IEEE Transactions on Wireless Communications, 15(10), 7199–7211.

    Article  Google Scholar 

  13. Cheng, X., Liu, D., Shi, W., Zhao, Y., Li, Y., & Kong, D. (2020). A novel conversion vector-based low-complexity SLM scheme for PAPR reduction in FBMC/OQAM systems. IEEE Transactions on Broadcasting, 66(3), 656–666.

    Article  Google Scholar 

  14. Hoglund, A., Lin, X., Liberg, O., Behravan, A., Yavuz, E. A., Van Der Zee, M., & Eriksson, D. (2017). Overview of 3GPP release 14 enhanced NB-IoT. IEEE Network, 31(6), 16–22.

    Article  Google Scholar 

  15. Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2018). Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRa WAN, and NB-IoT. In IEEE International Conference on Pervasive Computing and Communications Workshops (pp. 197–202).

  16. Adhikary, A., Lin, X., & Wang, Y. P. E. (2016). Performance evaluation of NB-IoT coverage. In IEEE International Conference on Vehicular Technology (pp. 1–5).

  17. Li, Y., Cheng, X., Cao, Y., Wang, D., & Yang, L. (2017). Smart choice for the smart grid: Narrowband Internet of Things (NB-IoT). IEEE Internet of Things Journal, 5(3), 1505–1515.

    Article  Google Scholar 

  18. Manikandan, T. T., Sukumaran, R., Christhuraj, M. R., & Saravanan, M. (2020), Adopting stochastic network calculus as mathematical theory for performance analysis of underwater wireless communication networks. In IEEE International Conference on Computing Methodologies and Communication (ICCMC) (pp. 436–441).

  19. Beck, M. (2016). Advances in theory and applicability of stochastic network calculus, Ph.D. thesis, pp.1-146.

  20. Li, H., Chen, G., Wang, Y., Gao, Y., & Dong, W. (2018). Accurate performance modeling of uplink transmission in NB-IoT. In IEEE International Conference on Parallel and Distributed Systems (ICPADS) (pp. 910–917).

  21. Bello, H., Jian, X., Wei, Y., & Chen, M. (2018). Energy-delay evaluation and optimization for NB-IoT PSM with periodic uplink reporting. IEEE Access, 7, 3074–3081.

    Article  Google Scholar 

  22. Yu, C., Yu, L., Wu, Y., He, Y., & Lu, Q. (2017). “Uplink scheduling and link adaptation for narrowband Internet of Things systems. IEEE Access, 5, 1724–1734.

    Article  Google Scholar 

  23. Lee, J. W., Kang, C. G., & Rim, M. J. (2018), SINR-ordered cross link interference control scheme for dynamic TDD in 5G system. In IEEE International Conference on Information Networking (ICOIN) (pp. 359–361).

  24. Ouaissa, M., & Rhattoy, A. (2018). New method based on priority of heterogeneous traffic for scheduling techniques in M2M communications over LTE networks. International Journal of Intelligent Engineering and Systems, 11(6), 209–219.

    Article  Google Scholar 

  25. Pramiti, P., Modi R. K. (2017). Waveform Contenders of 5G Technology. International Research Journal of Engineering and Technology (IRJET), 04(05), 249–251.

  26. AitorLizeaga, P. M. R., IñakiVal, M. M. (2017). Evaluation of 5G modulation candidates WCP–COQAM, GFDM–OQAM, and FBMC–OQAM in low-band highly dispersive wireless channels. Journal of Computer Networks and Communications, 3, 1–11.

  27. Parnika, K., Ashok, K. S. (2017). FBMC vs. OFDM waveform contenders for 5G wireless communication systems. Journal of Wireless Engineering and Technology, 8(4).

  28. Felipe, K. J., Luis, H. L., Samuel, B. M., Eduardo, P. R. (2018). Spectral efficiency analysis in massive MIMO using FBMC–OQAM modulation. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 17(4), 604–618.

  29. Daba, J. S., Dubois, J.-P., & El Soury, G. (2018). Performance analysis in 5th generation massive multiple-input-multiple-output systems. IEEE International Conference Proceedings, 13(4), 220–225.

    Google Scholar 

  30. Rakibul Alam, M. D., & Jannatul, F. (2018). Implementation of downlink physical channels and channel estimation for long-term evolution (LTE). Journal of Engineering Research and Application 8(2) (Part-3), 45–49.

  31. Hassan, S. M., & Zekry, A. (2017). FPGA implementation of LTE-advanced downlink physical layer transceiver. International Journal of Electronics & Communication Technology (IJECT), 8(2), 9–18.

    Google Scholar 

  32. Kanchana, L., Athisha, G. (2016) LTE-3GPP uplink and downlink transmission. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 5(6).

  33. Hassan, S. M., & Zekry, A. (2015). FPGA implementation of LTE downlink transceiver with synchronization and equalization. Communications on Applied Electronics, 2(2), 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabilamani, P., Gomathy, C. Implementation of Downlink Physical Channel Processing Architecture for NB-IoT Using LTE/5G Networks. Wireless Pers Commun 116, 3527–3551 (2021). https://doi.org/10.1007/s11277-020-07863-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07863-5

Keywords

Navigation