Skip to main content

Advertisement

Log in

A Cyclic Prefix Free Multiple Input Multiple Output Generalized Frequency Division Multiplexing System Design

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The existing generalized frequency division multiplexing (GFDM) systems employ cyclic prefix (CP) to avoid inter-symbol interference (ISI) in frequency-selective fading channels. For multiple input multiple output GFDM (MIMO-GFDM) system, the existence of CP will result in the losses of spectrum efficiency, energy efficiency and transmission rate (SET). In this paper, we propose a novel MIMO-GFDM system without CP insertion. We design a decision feedback equalizer that is performed before fast Fourier transform operation to efficiently remove ISI. We also design a CP restoration unit to remove the inter-carrier interference in the MIMO-GFDM systems. The proposed CP-free MIMO-GFDM system offers a much higher SET than traditional MIMO-GFDM systems in frequency selective fading channels. Some simulation examples are given to demonstrate the effective of the proposed MIMO-GFDM system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Boroujeny, B. F., & Moradi, H. (2016). OFDM inspired waveforms for 5G. IEEE Communications Surveys and Tutorials, 18(4), 2474–2492.

    Article  Google Scholar 

  2. Nimr, A., Matthé, M., Zhang, D., & Fettweis, G. (2017). Optimal radix-2 FFT compatible filters for GFDM. IEEE Communications Letters, 21(7), 1497–1500.

    Article  Google Scholar 

  3. Zhang, D., Mendes, L. L., Matthé, M., Gaspar, I. I. S., Michailow, N., & Fettweis, G. (2016). Expectation Propagation for near-optimum detection of MIMO-GFDM signals. IEEE Transactions on Wireless Communications, 15, 1045–1062.

    Article  Google Scholar 

  4. Lv, T., Tan, F., Gao, H., & Yang, S. (2016). A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems. Signal Process, 121, 30–45.

    Article  Google Scholar 

  5. Chen, C., Zhong, W. D., & Wu, D. H. (2017). Non-hermitian symmetry orthogonal frequency division multiplexing for multiple-input multiple-output visible light communications. IEEE/OSA Journal of Optical Communications and Networking, 9(1), 36–44.

    Article  Google Scholar 

  6. Chen, C., Zhong, W. D., & Wu, D. (2017). On the coverage of multiple-input multiple-output visible light communications. IEEE/OSA Journal of Optical Communications and Networking, 9(9), D31–D41.

    Article  Google Scholar 

  7. Lin, B., Ghassemlooy, Z., Tang, X., Li, Y., & Zhang, M. (2017). Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission. Optics Communication, 402, 52–55.

    Article  Google Scholar 

  8. Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Article  Google Scholar 

  9. Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15(6), 4438–4454.

    Article  Google Scholar 

  10. Kumbhani, B., & Kshetrimayum, R. S. (2017). MIMO wireless communications over generalized fading channels. Boca Raton: CRC Press.

    Google Scholar 

  11. Abdullah, E., Idris, A., & Saparon, A. (2017). PAPR reduction using SCS-SLM technique in STFBC MIMO-OFDM. ARPN Journal of Engineering and Applied Sciences, 12, 3218–3221.

    Google Scholar 

  12. Schur, R., Speidel, J., & Angerbauer, R. (2000). Reduction of guard interval by impulse compression for DMT modulation on twisted pair cables. IEEE Global Telecommunications Conference (GLOBECOM), 3, 1632–1636.

    Google Scholar 

  13. Melsa, P. J., Younce, R. C., & Rohrs, C. E. (1996). Impulse response shortening for discrete multitone transceivers. IEEE Transactions on Communications, 44(12), 1662–1672.

    Article  Google Scholar 

  14. Celebi, S. (2003). Interblock interference (IBI) minimizing time-domain equalizer (TEQ) for OFDM. IEEE Signal Processing Letters, 10(8), 232–234.

    Article  Google Scholar 

  15. Ragoubi, K., Hélard, M., & Crussiere, M. (2010). Channel shortening for bit rate maximization in DMT communication systems. In IEEE vehicular technology conference fall (VTC 2010-Fall) (pp 1–5).

  16. Schur, R., & Speidel, J. (2001). An efficient equalization method to minimize delay spread in OFDM/DMT systems. IEEE International Conference on Communications, 5, 1481–1485.

    Article  Google Scholar 

  17. Daly, D., Heneghan, C., & Fagan, A. D. (2004). Minimum mean-squared error impulse response shortening for discrete multitone transceivers. IEEE Transactions on Signal Processing, 52(1), 301–306.

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Chen, H. H., Chen, S., & Meng, W. (2016). Symbol cyclic shift equalization algorithm—A CP-free OFDM/OFDMA system design. IEEE Transaction on Vehiclar Technology, 66(1), 5933–5946.

    Google Scholar 

  19. Jin, Y., & Xia, X.-G. (2014). A robust precoder design based on channel statistics for MIMO-OFDM systems with insufficient cyclic prefix. IEEE Transactions on Communications, 62(4), 1249–1257.

    Article  Google Scholar 

  20. Jin, Y., & Xia, X. -G. (2012). An interference alignment based precoder design using channel statistics for OFDM systems with insufficient cyclic prefix. In IEEE global communications conference (GLOBECOM).

  21. Michailow, N., Matthé, M., & Gaspar, I. S. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  22. Farhang, A., Marchetti, N., & Doyle, L. E. (2016). Low-complexity modem design for GFDM. IEEE Transactions on Signal Processing, 64(6), 1507–1518.

    Article  MathSciNet  Google Scholar 

  23. Towliat, M., & Tabatabaee, S. M. J. A. (2018). GFDM interference mitigation without noise enhancement. IEEE Communications Letters, 22(5), 1042–1045.

    Article  Google Scholar 

  24. Matthé, M., Mendes, L. L., Michailow, N., Zhang, D., & Fettweis, G. (2015). Widely linear estimation for space-time-coded GFDM in low-latency applications. IEEE Transactions on Communications, 63(11), 4501–4509.

    Article  Google Scholar 

  25. Rasekh, A., & Bakhtiar, M. S. (2018). Design of low-power low-area tunable active RC filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1), 6–10.

    Article  Google Scholar 

  26. de Almeida, I. B. F., et al. (2019). 5G waveforms for IoT applications. IEEE Communications Surveys & Tutorials, 21, 2554–2567.

    Article  Google Scholar 

  27. Zahid, N., & Sodhro, A. H. (2018). HARQ with chase-combining for bandwidth efficient communication in MIMO Wireless Networks. In 2018 International conference on computing mathemetics and engineering technologies (iCoMET), Pakistan (pp. 1–6).

  28. Lodro, M. M., Majeed, N., Khuwaja, A. A., Sodhro,A. H., & Greedy, S. (2018) Statistical channel modelling of 5 g mmwave mimo wireless communication. In 2018 International conference on computing mathemetics and engineering technologies (iCoMET) (pp. 1–5).

  29. Sodhro, A. H. et al. (2017) Energy-efficiency in wireless body sensor networks. In Networks of the Future Architectures, Technologies, and Implementations (p. 492). Chapman & Hall/CRC Computer and Information Science Series.

  30. Sodhro, A. H., Oblaidat, M. S., Abbasi, Q. H., Pace, P., Pirbgulal, S., Yasar, A., et al. (2019). Quality of service optimization in an IoT-driven intelligent transportation system. IEEE Wireless Communications, 26(6), 10–17.

    Article  Google Scholar 

  31. Sodhro, A. H., Li, Y., & Shah, M. A. (2016). Energy-efficient adaptive transmission power control for wireless body area networks. IET Communications, 10(1), 81–90.

    Article  Google Scholar 

  32. Sodhro, A. H., Pirbhulal, S., Luo, Z., & de Albuquerque, V. H. C. (2019). Towards an optimal resource management for IoT based green and sustainable smart cities. Journal of Cleaner Production, 220, 1167–1179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Biau Ueng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, Y., Ueng, FB. & Shen, YS. A Cyclic Prefix Free Multiple Input Multiple Output Generalized Frequency Division Multiplexing System Design. Wireless Pers Commun 117, 311–336 (2021). https://doi.org/10.1007/s11277-020-07870-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07870-6

Keywords

Navigation