Skip to main content
Log in

Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In today’s scenario, demand for error-correcting codes with minimal error constraints for wireless communications. Multilevel coding scheme with trellis codes as component codes provides flexible data transmission rates, coding gain, diversity gain with improved spectral efficiency and low decoding complexity. This paper investigates the potential improvements by using the Multilevel coding scheme with massive Multiple-Input Multiple-Output in Cognitive Radio Networks with trellis codes as component codes. This paper discussed space-time coding with beamforming and antenna grouping according to the channel state information. Multilevel Space-time coding is based on multi-level Quadrature Amplitude Modulation signaling and beamforming to mitigate the effect of primary users for the enactment of secondary users in Cognitive Radio. The primary users provide channels dynamically to the secondary user for an unknown duration. Our transmission use Quadrature Amplitude Modulation based signals, with an adaptive grouping of antenna which weight according to the optimization, which inherently depends upon the resource allocation of the secondary user. The results show that the proposed coded system achieves Bit error rate/Symbol error rate/Frame error rate and Signal to noise ratio varies according to sources sensing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.

    Article  Google Scholar 

  2. Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.

    Article  MathSciNet  Google Scholar 

  3. Sklar, B., & Harris, F. J. (1988). Digital communications: fundamentals and applications (Vol. 2001). Englewood Cliffs, NJ: Prentice-hall.

    MATH  Google Scholar 

  4. Cheng, J.-F, Chuang, C.-H, & Lee, L.-S. (1993). Complexity-reduced multilevel coding with rate-compatible punctured convolutional codes. In Proceedings of GLOBECOM’93. IEEE Global Telecommunications Conference, pp. 814–818. IEEE.

  5. Kofman, Y., Zehavi, E., & Shamai, S. (1994). Performance analysis of a multilevel coded modulation system. IEEE Transactions on Communications, 42(234), 299–312.

    Article  Google Scholar 

  6. Morelos-Zaragoza, R. H., & Imai, H. (1998). Binary multilevel convolutional codes with unequal error protection capabilities. IEEE Transactions on Communications, 46(7), 850–853.

    Article  Google Scholar 

  7. Isaka, M., & Imai, H. (2001). On the iterative decoding of multilevel codes. IEEE Journal on Selected Areas in Communications, 19(5), 935–943.

    Article  Google Scholar 

  8. Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2006). Multilevel coding in free-space optical MIMO transmission with Q-are PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 18(14), 1491–1493.

    Article  Google Scholar 

  9. Kumar, V., & Ram Singla, C. (2014). Space-time block code analysis for MIMO-OFDM system. Space, 100(2), 1–7.

    Google Scholar 

  10. Avendi, M. R., & Jafarkhani, H. (2015). Differential distributed space-time coding with imperfect synchronization in frequency-selective channels. IEEE Transactions on Wireless Communications, 14(4), 1811–1822.

    Article  Google Scholar 

  11. Ozcelikkale, A., & Duman, T. M. (2014). Short length trellis-based codes for gaussian multiple-access channels. IEEE Signal Processing Letters, 21(10), 1177–1181.

    Article  Google Scholar 

  12. Jafarkhani, H., & NambiSeshadri. (2003). Super-orthogonal STCs. IEEE Transactions on Information Theory, 49(4), 937–950.

    Article  MathSciNet  Google Scholar 

  13. Jafarkhani, H., & NavidHassanpour. (2005). Super-quasi-orthogonal STCs for four transmit antennas. IEEE Transactions on Wireless Communications, 4(1), 215–227.

    Article  Google Scholar 

  14. Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel STCs. Wireless Personal Communications, 75(4), 1851–1862.

    Article  Google Scholar 

  15. Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel STCs. International Journal of Electronics, 102(5), 886–896.

    Article  Google Scholar 

  16. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (May 1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.

    Article  MathSciNet  Google Scholar 

  17. Mavares, D., & Torres, R. P (2006). Space-time code selection for transmits antenna diversity systems. In Proceedings of the First Mobile Computing and Wireless Communication International Conference, pp. 83–87.

  18. Liu, L., & Jafarkhani, H. (2006). STCs based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.

    Article  Google Scholar 

  19. Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006), pp. 88–92.

  20. Li, Y., Vucetic, B., Santoso, A., & Chen, Z. (2003). STCs with adaptive weighting. Electronics Letters, 39, 1833–1834. https://doi.org/10.1049/el:20031180.

    Article  Google Scholar 

  21. Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.

    Article  Google Scholar 

  22. Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.

    Article  Google Scholar 

  23. Chen, Z., Vucetic, B., & Yuan, J. (2003). STCs with transmit antenna selection. Electronics Letters, 39(11), 854–855.

    Article  Google Scholar 

  24. Narasimhan, R. (2003). Spatial multiplexing with transmits antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.

    Article  Google Scholar 

  25. MarjanBaghaie, A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel STCs. IEEE Communications Letters, 14(3), 232–234.

    Article  Google Scholar 

  26. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  27. Zhao, Q., & Swami, A. (Aug. 2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Transations Wireless Communications., 14(4), 14–20.

    Article  Google Scholar 

  28. Haykin, S. (Feb. 2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  29. Mitola, J., & Maguire, G. Q. (Aug. 1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  30. Biglieri, E., Goldsmith, A. J., Greenstein, L. J., Mandayam, N. B., & Poor, H. V. (2013). Principles of cognitive radio. New York: Cambridge University Press.

    Google Scholar 

  31. Babaei, M., & Aygölü, Ü. (2016). Interference-free spectrum sharing in cognitive radio based on combined CIOD and STBC, In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), September, pp. 626–631.

  32. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  33. Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. K. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  34. Chopra, S. R., Gupta, A., & Jha, R. K. (2019). Performance analysis of grouped multilevel space-time Trellis coding technique using cognitive radio in different deployment models. Wireless Communications and Mobile Computing, Hindawi. https://doi.org/10.1155/2019/5280615.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Gupta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, S.R., Gupta, A. Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio. Wireless Pers Commun 117, 461–482 (2021). https://doi.org/10.1007/s11277-020-07878-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07878-y

Keywords

Navigation