Skip to main content
Log in

Compact Rack Shaped MIMO Dielectric Resonator Antenna with Improved Axial Ratio for UWB Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a rack shaped two radiator element multiple input multiple output (MIMO) dielectric resonator antenna (DRA) is reported with improved axial ratio (AR) characteristics for ultra-wideband applications. The proposed MIMO antenna structure is implemented with the help of two rectangular shaped radiator elements which are further changed into rack shaped dielectric resonator (DR) that support three modes HEM111, HEM121, and HEM212, at 7.3, 9.3, 10.74 GHz respectively. The approach of rack shaped DRA has improved the transmission coefficient for the UWB range. Inverted T-shaped metallic strip apart from giving elliptically polarized (EP) characteristics also helps in controlling both the axial ratio bandwidth and impedance bandwidth (101.87%). The simulated and measured outcomes validated that the proposed antenna can be utilized for 3.54–10.89 GHz ultra-wideband (UWB) frequency range. The MIMO diversity parameters are implemented as ECC ≤ 0.0059, DG ≥ 9.93 dB, TARC (0, 30, 60, 90, 120, 150, and 180) degrees, GD (0.96 to − 2.1 ns) and CCL (≤ 0.4 except of 8.8–9.6 GHz). All the obtained MIMO antenna parameters are within the acceptable limit and also provides high data rate applications in C and X bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Docket, E.T. (2002). Docket 98–153, FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Technical Report.

  2. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antenna. U. K.: Research Studies Press, UK.

    Google Scholar 

  3. Yaduvanshi, R. S., & Parthasarathy, H. (2016). Rectangular dielectric resonator antennas. New Delhi, India: Springer.

    Book  Google Scholar 

  4. Mongia, R. K., & Bhartia, P. (1994). Dielectric resonator antennas—A review and general design relations for resonant frequency and bandwidth. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, 4(3), 230–247.

    Article  Google Scholar 

  5. Pan, Y. M., & Zheng, S. Y. (2015). A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 15, 68–71.

    Article  Google Scholar 

  6. Sharma, A., Sarkar, A., Biswas, A., & Akhtar, M. J. (2018). A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation. International Journal of RF and Microwave Computer-Aided Engineering, 28(8), e21402.

    Article  Google Scholar 

  7. Das, G., Sharma, A., & Gangwar, R. K. (2017). Dual feed MIMO cylindrical dielectric resonator antenna with high isolation. Microwave and Optical Technology Letters, 59(7), 1686–1692.

    Article  Google Scholar 

  8. Agarwal, A., & Kaur, A. (2017). A dual band stacked aperture coupled antenna array for WLAN applications. Microwave and Optical Technology Letters, 59(3), 648–654.

    Article  Google Scholar 

  9. Das, G., Sharma, A., & Gangwar, R. K. (2018). Triple-band hybrid antenna with integral isolation mechanism for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1482–1491.

    Article  Google Scholar 

  10. Abedian, M., Rahim, S. K. A., Fumeaux, C., Danesh, S., Lo, Y. C., & Jamaluddin, M. H. (2017). Compact ultrawideband MIMO dielectric resonator antennas with WLAN band rejection. IET Microwaves, Antennas and Propagation, 11(11), 1524–1529.

    Article  Google Scholar 

  11. Das, G., Sharma, A., Gangwar, R. K., & Sharawi, M. S. (2018). Triple-port, two-mode based two element cylindrical dielectric resonator antenna for MIMO applications. Microwave and Optical Technology Letters, 60(6), 1566–1573.

    Article  Google Scholar 

  12. Ahmad Khan, A., Khan, R., Aqeel, S., Ur Rehman Kazim, J., Saleem, J., & Owais, M. K. (2017). Dual-band mimo rectangular dielectric resonator antenna with high port isolation for LTE applications. Microwave and Optical Technology Letters, 59(1), 44–49.

    Article  Google Scholar 

  13. Chae, S. H., Oh, S. K., & Park, S. O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas and Wireless Propagation Letters, 6, 122–125.

    Article  Google Scholar 

  14. Sahu, N. K., Das, G., & Gangwar, R. K. (2018). Dual polarized triple-band dielectric resonator based hybrid MIMO antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60(4), 1033–1041.

    Article  Google Scholar 

  15. Trivedi, K., & Pujara, D. (2017). Mutual coupling reduction in wideband tree shaped fractal dielectric resonator antenna array using defected ground structure for MIMO applications. Microwave and Optical Technology Letters, 59(11), 2735–2742.

    Article  Google Scholar 

  16. Nasir, J., Jamaluddin, M. H., Khalily, M., Kamarudin, M. R., Ullah, I., & Selvaraju, R. (2015). A reduced size dual port MIMO DRA with high isolation for 4G applications. International Journal of RF and Microwave Computer-Aided Engineering, 25(6), 495–501.

    Article  Google Scholar 

  17. Wu, Y., Ding, K., Zhang, B., Li, J., Wu, D., & Wang, K. (2018). Design of a compact UWB MIMO antenna without decoupling structure. International Journal of Antennas and Propagation, 2018, 1–8.

    Google Scholar 

  18. Yadav, D., Abegaonkar, M. P., Koul, S. K., Tiwari, V. N., & Bhatnagar, D. (2018). Two element band-notched UWB MIMO antenna with high and uniform isolation. Progress in Electromagnetics Research, 63, 119–129.

    Article  Google Scholar 

  19. Lin, H., Song, Z., Wang, X., & Gao, H. (2017). An improved antenna group delay measurement method using a three-antenna extrapolation technique. Radioengineering, 26(3), 675–681.

    Article  Google Scholar 

  20. Yadav, S. K., Kaur, A., Khanna, R., et al. (2020). An ultra wideband “OM” shaped DRA with a defected ground structure and dual polarization properties for 4G/5G wireless communications. International Journal of RF and Microwave Computer-Aided Engineering, 30(8), e22327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.K., Kaur, A. & Khanna, R. Compact Rack Shaped MIMO Dielectric Resonator Antenna with Improved Axial Ratio for UWB Applications. Wireless Pers Commun 117, 591–606 (2021). https://doi.org/10.1007/s11277-020-07887-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07887-x

Keywords

Navigation