Skip to main content

Advertisement

Log in

Effectual Computing Enhanced Aggregator Node B for 5G Vehicular Milieu

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the existing environment, 30% of the base station has to handle the 70% of the network load. For a fact, the installation of additional base radio stations increases the deployment costs. The Computing Improved Aggregator Node B (CIANB) has been introduced for the 5G vehicular environment to fix this issue. The CIANB is the base radio station which consists of virtual cloud, storage space, and Aggregator Node B (ANB) pool. This paper discusses the forthcoming infrastructure, such as CIANB, which is progressing towards its innovation in the 5G vehicular environment. The CIANB and virtual ANB instance have been introduced in this paper to reduce congestion and to maximize the utilization of services without interruption. The evaluation metrics justify that the forthcoming infrastructure, CIANB, and virtual ANB greatly enhances the efficiency of the 5G vehicular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2015). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.

    Article  Google Scholar 

  2. Hossain, E., & Hasan, M. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation & Measurement Magazine, 18(3), 11–21.

    Article  Google Scholar 

  3. Akyildiz, I. F., Lina, S.-C., & Wang, P. (2015). Wireless software-defined networks (W-SDN) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks, 93, 66–79.

    Article  Google Scholar 

  4. Nguyen, V.-G., Do, T.-X., & Kim, Y. H. (2016). SDN and virtualization-based LTE mobile network architectures: A comprehensive survey. Wireless Personal Communications, 86(3), 1401–1438.

    Article  Google Scholar 

  5. Dharanyadevi, P., & Venkatalakshmi, K. (2016). Proficient routing by adroit algorithm in 5G-Cloud-VMesh network. EURASIP Journal on Wireless Communications and Networking, 2016, 89.

    Article  Google Scholar 

  6. Sunitha, C., & Anithadevi, M. (2016). Cloud-assisted safety message dissemination in hybrid vehicular network. International Journal of Innovative Research in Computer and Communication Engineering, 4(3), 4513–4519.

    Google Scholar 

  7. Nithyavathi, K., Vigneshwaran, K., & Sumithra, S. (2016). A gateway selection algorithm in a hybrid clustered VANET-LTE advanced network. International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST), 2(6), 37–44.

    Google Scholar 

  8. Mohsen, M., Nasr, M., Mohamed, A., Abdelgader, S., Wang, Z.-G., & Shen, L.-F. (2016). VANET clustering based routing protocol suitable for deserts. Sensors (Basel), 6(4), 1–12.

    Google Scholar 

  9. Mer, S. B. (2015). Smart vehicle-to-vehicle communication with 5G technology. International Journal on Recent and Innovation Trends in Computing and Communication, 3(5), 3241–3244.

    Google Scholar 

  10. Prasan, D., & Murugappan, S. (2016). An analysis on vehicular ad-hoc networks: Research issues, challenges and applications. International Journal of Applied Engineering Research, 11(6), 4569–4575.

    Google Scholar 

  11. Kulkarni, A., Gupta, P., & Avhad, K. (2016). Distance and priority based routing protocol in VANET. International Journal of Innovative Research in Science, Engineering and Technology, 5(7), 13931–13935.

    Google Scholar 

  12. Wubben, D., Rost, P., Bartelt, J. S., Lalam, M., Savin, V., Gorgoglione, M., Dekorsy, A., & Fettweis, G. (2014). Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN. IEEE Signal Processing Magazine, 31(6), 35–44.

    Article  Google Scholar 

  13. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  14. NTT DOCOMO. (2016, August). R3-161687, Draft TR 38.801 (v030) Study on new radio access technology: Radio access architecture and interfaces. NTT DOCOMO, INC (Rapporteur), 3GPP TSG RAN3.

  15. Small Cell Forum. (2016, January). Document 159.07.02, Small cell virtualization functional splits and use cases. Small Cell Forum.

  16. He, Z., Cao, J., & Liu, X. (2016). SDVN: Enabling rapid network innovation for heterogeneous vehicular communication. IEEE Network, 30(4), 10–15.

    Article  Google Scholar 

  17. Salahuddin, M. A., Al-Fuqaha, A., & Guizani, M. (2015). Software-defined networking for RSU clouds in support of the internet of vehicles. IEEE Internet of Things Journal, 2(2), 133–144.

    Article  Google Scholar 

  18. Dharanyadevi, P., & Venkatalakshmi, K. (2015). Potent gateway selection algorithm for integrated 3G-VMesh milieu. World Applied Sciences Journal, ISSN: 1818-4952, 33(7), 1228–1233.

    Google Scholar 

  19. Dharanyadevi, P., & Venkatalakshmi, K. (2017). Persuasive gateway and eNB selection algorithm for 4G-VMesh network. Australian Journal of Basic and Applied Sciences, ISSN: 1991-8178, 11(11), 118–121.

    Google Scholar 

  20. Kim, C., & Kim, K.-I. (2019). IEEE 90th Vehicular Technology Conference (VTC2019-Fall), USA

  21. Papcun, P., Kajati, E., Cupkova, D., Mocnej, J., Miskuf, M., & Zolotova, I. (2019). Edge-enabled IoT gateway criteria selection and evaluation. Concurrency and Computation: Practice and Experience, 32(13), 219.

    Google Scholar 

  22. Abboud, S., El Rachkidy, N., Guitton, A., & Safa, H. (2019, April) Gateway selection for downlink communication in LoRaWAN. IEEE WCNC 2019, IEEE Wireless Communications and Networking Conference 2019, Apr Marrakech, Morocco.

  23. Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, A. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52, 65–75.

    Article  Google Scholar 

  24. Gupta, A., & Jha, R. K. (2015). Survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  25. Guerzoni, R., Trivisonno, R., & Soldani, D. (2014). SDN-based architecture and procedures for 5G networks. In 1st International Conference on 5G for Ubiquitous Connectivity (5GU) (pp. 204–209). New York: IEEE.

    Google Scholar 

  26. Nam, H. (2015). Intelligent content delivery over wireless via SDN. In IEEE Wireless Communications and Networking Conference (WCNC): Track 4 - Services, Applications, and Business (pp. 2185–2190). New York: IEEE.

    Google Scholar 

  27. Ameigeiras, P., Ramos-Munoz, J. J., Schumacher, L., Prados-Garzon, J., Navarro-Ortiz, J., & Lopez-Soler, J. M. (2015). Link-level access cloud architecture design based on SDN for 5G networks. IEEE Network, 29(2), 24–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dharanyadevi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharanyadevi, P., Krishnan, V. Effectual Computing Enhanced Aggregator Node B for 5G Vehicular Milieu. Wireless Pers Commun 117, 623–636 (2021). https://doi.org/10.1007/s11277-020-07890-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07890-2

Keywords