Skip to main content
Log in

A Framework on the Performance Analysis of Cooperative Wireless Body Area Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) are deal with wireless networks in the human body. We describe the performance analysis of dual-hop cooperative relaying systems employing amplify-and-forward (AF) technique in WBANs over independent and nonnecessary identically distributed Gamma fading channels. More specifically, we present closed-form derivations of the outage probabilities (OP), symbol error probabilities (SEP) and ergodic capacity (EC) for fixed gain and channel state information (CSI)-assisted relaying techniques at arbitrary signal-to-noise-ratios (SNRs). We also deduce novel expressions in the high SNR region. By doing so, we can quantify the performance of system by the diversity and coding gains. Using the derived expressions as a starting point and for the case of Exponential fading, we consider three practical optimization scenarios. They are optimal relay position with fixed power allocation, power allocation under the fixed location of the relay and joint optimization of power allocation and relay position under a transmit power constraint. The Monte Carlo simulations are used to validate the accuracy of our derivations, where it is demonstrated that the proposed adaptive allocation method significantly outperforms the fixed allocation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  2. Jamthe, A., & Agrawal, D. P. (2015). Harnessing big data for wireless body area network applications. In Proceeding of International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 868–875). IEEE: Jabalpur, India.

  3. Naganawa, J.-I., Wangchuk, K., Kim, M., Aoyagi, T., & Takada, J.-I. (2015). Simulation-based scenario-specific channel modeling for wban cooperative transmission schemes. IEEE Journal of Biomedical and Health Informatics, 19(2), 559–570.

    Article  Google Scholar 

  4. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Teo, J., Lai, J. C. Y., Gunawan, E., Low, K. S., Soh, C. B., et al. (2009). Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1), 5–16.

    Article  Google Scholar 

  6. Ivanov, S., Botvich, D., & Balasubramaniam, S. (2012). Cooperative wireless sensor environments supporting body area networks. IEEE Transactions on Consumer Electronics, 58(2), 0098–3063.

    Article  Google Scholar 

  7. Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97–117.

    Article  Google Scholar 

  8. Smith, D., Hanlen, L., Zhang, J., Miniutti, D., Rodda, D., & Gilbert, B. (2011). First and second-order statistical characterizations of the dynamic body area propagation channel of various bandwidths. Annals of Telecommunications, 66, 187–203.

    Article  Google Scholar 

  9. Huang, X., Shan, H., & Shen, X. (2011). On energy efficiency of cooperative communications in wireless body area network. In Proceeding of IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1097–1101). Cancun, Quintana Roo, Mexico: IEEE.

  10. Smith, D. B. & Hanlen, L. W. (2015). Channel modeling for wireless body area networks. In Ultra-Low-Power Short-Range Radios (pp. 25–55). Springer.

  11. van Roy, S., Quitin, F., Liu, L., Oestges, C., Horlin, F., Dricot, J. M., et al. (2013). Dynamic channel modeling for multi-sensor body area networks. IEEE Transactions on Antennas and Propagation, 61(4), 2200–2208.

    Article  Google Scholar 

  12. Dong, J., & Smith, D. (2013). Opportunistic relaying in wireless body area networks: Coexistence performance. In Proceeding of IEEE International Conference on Communications (ICC) (pp. 5613–5618). Budapest: Hungary.

  13. Smith, D. B., Miniutti, D., & Hanlen, L. W. (2011). Characterization of the body-area propagation channel for monitoring a subject sleeping. IEEE Transactions on Antennas and Propagation, 59(11), 4388–4392.

    Article  Google Scholar 

  14. Moosavi, H., & Bui, F. M. (2016). Routing over multi-hop fading wireless body area networks with reliability considerations. In Proceeding of 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4941–4945). Orlando, FL, USA: IEEE.

  15. Ibrahim, S. D., Ugweje, O. C., Aibinu, A. M., Koyunlu, G., & Adeshina, S. (2017). Performance of wireless body area network in the presence of multipath and fading. In Proceeding of International Conference on Electronics Computer and Computation (ICECCO) (pp. 1–6).

  16. Tran, L. C., Mertins, A., Huang, X., & Safaei, F. (2016). Comprehensive performance analysis of fully cooperative communication in WBANs. IEEE Access, 4, 8737–8756.

    Article  Google Scholar 

  17. Razavi, A., & Jahed, M. (2019). Capacity-outage joint analysis and optimal power allocation for wireless body area networks. IEEE Systems Journal, 13(1), 636–646.

    Article  Google Scholar 

  18. Amouri, B., Ghanem, K., & Kaddeche, M. (2016). Hybrid relay selection-based scheme for UWB BANs combining MB-OFDM and decode-and-forward cooperative architectures. Electronics Letters, 52(24), 2017–2019.

    Article  Google Scholar 

  19. Moosavi, H., & Bui, F. M. (2016). Optimal relay selection and power control with quality-of-service provisioning in wireless body area networks. IEEE Transactions on Wireless Communications, 15(8), 5497–5510.

    Article  Google Scholar 

  20. Zhang, X., Liu, K., & Tao, L. (2018). A cooperative communication scheme for full-duplex simultaneous wireless information and power transfer wireless body area networks. IEEE Sensors Letters, 2(4), 1–4.

    Google Scholar 

  21. Liu, H., Hu, F., Qu, S., Li, Z., & Li, D. (2019). Multi-point wireless information and power transfer to maximize sum-throughput in WBAN with energy harvesting. IEEE Internet of Things Journal, 6(4), 7069–7078.

    Article  Google Scholar 

  22. Ramgoolam, K., & Bassoo, V. (2019). Maximising energy efficiency for direct communication links in wireless body area networks. IET Wireless Sensor Systems, 9(1), 32–41.

    Article  Google Scholar 

  23. Shimly, S. M., Smith, D. B., & Movassaghi, S. (2019). Experimental analysis of cross-layer optimization for distributed wireless body-to-body networks. IEEE Sensors Journal, 19(24), 12494–12509.

    Article  Google Scholar 

  24. Van, S. D., Ngo, H. Q., & Cotton, S. L. (2020). Wireless powered wearables using distributed massive MIMO. IEEE Transactions on Communications, 68(4), 2156–2172.

    Article  Google Scholar 

  25. George, E. M., & Jacob, L. (2020). Interference mitigation for coexisting wireless body area networks: Distributed learning solutions. IEEE Access, 8, 24209–24218.

    Article  Google Scholar 

  26. Cardoso, F. D., Kosz, P. T., Ferreira, M. M., Ambroziak, S. J., & Correia, L. M. (2020). Fast fading characterization for body area networks in circular metallic indoor environments. IEEE Access, 8, 43817–43825.

    Article  Google Scholar 

  27. Haddad, O., Khalighi, M., Zvanovec, S., & Adel, M. (2020). Channel characterization and modeling for optical wireless body-area networks. IEEE Open Journal of the Communications Society, 1, 760–776.

    Article  Google Scholar 

  28. Kong, P. (2020). Cellular-assisted device-to-device communications for healthcare monitoring wireless body area networks. IEEE Sensors Journal.

  29. Huang, Z., Cong, Y., Ling, Z., Mao, Z., & Hu, F. (2020). Optimal dynamic resource allocation for multi-point communication in WBAN. IEEE Access, 8, 114153–114161.

    Article  Google Scholar 

  30. Li, S., Hu, F., Xu, Z., Mao, Z., Ling, Z., & Liu, H. (2020). Joint power allocation in classified WBANs with wireless information and power transfer. IEEE Internet of Things Journal.

  31. Soleimani-Nasab, E., Matthaiou, M., Ardebilipour, M., & Karagiannidis, G. K. (2013). Two-way AF relaying in the presence of co-channel interference. IEEE Transactions on Communications, 61(8), 3156–3169.

    Article  Google Scholar 

  32. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series and Products, 7th ed., Jeffrey, A. (Ed.), Elsevier Inc..

  33. Mittal, P., & Gupta, K. (1972). An integral involving generalized function of two variables. Proceedings of the Indian Academy of Sciences - Section A, 75(3), 117–123.

    Article  MathSciNet  Google Scholar 

  34. Peppas, K. (2012). A new formula for the average bit error probability of dualhop amplify-and-forward relaying systems over generalized shadowed fading channels. IEEE Wireless Communications Letters, 1(2), 85–88.

    Article  Google Scholar 

  35. Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2009). The H-function: Theory and Applications. Berlin: Springer.

    MATH  Google Scholar 

  36. Soleimani-Nasab, E., Matthaiou, M., & Ardebilipour, M. (2013). Multi-relay MIMO systems with OSTBC over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technolology, 62(8), 3721–3736.

    Article  Google Scholar 

  37. Simmons, G. F. (1995). Calculus with Analytic Geometry ser. 2nd. New York: McGraw-Hill.

    Google Scholar 

  38. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  39. Wolfram (2016). The Wolfram functions site, Available: http://functions.wolfram.com.

  40. Spiegel, M. R., Lipschutz, S., & Liu, J. (2009). Schaum’s Mathematical Handbook of Formulas and Tables (3rd ed.). New York: M. G. Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Soleimani-Nasab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

By employing (7), the OP of dual-hop relaying assuming the fixed gain relaying technique can be expressed as

$$\begin{aligned} {{P}_{\mathrm{out}}^F}({{\gamma }_{\mathrm{th}}})=\Pr [\gamma _{\mathrm{e2e}}^{{F}}<{{\gamma }_{\mathrm{th}}}]=\Pr \left[ \frac{{{\gamma }_{1}}{{\gamma }_{2}}}{C+{{\gamma }_{2}}}<{{\gamma }_{\mathrm{th}}} \right] \end{aligned}$$
(63)

Using the probability conditioning technique on \(\gamma _{2}\) RV, we can rewrite (63) as bellows

$$\begin{aligned} {{P}_{\mathrm{out}}^F}({{\gamma }_{\mathrm{th}}})=\int \limits _{0}^{\infty }{{\mathrm{Pr}} \left[ \frac{{{\gamma }_{1}}{{\gamma }_{2}}}{C+{{\gamma }_{2}}} < {{\gamma }_{\mathrm{th}}}\left| {{\gamma }_{2}} \right. \right] }{{f}_{{{\gamma }_{2}}}}({{\gamma }_{2}})d{{\gamma }_{2}} \end{aligned}$$
(64)

Putting (4) and (5) in (64), and by separating (64) into two cases for odd and even values of i, we get

$$\begin{aligned} {{P}_{\mathrm{out}}^F}({{\gamma }_{\mathrm{th}}}) = 1-{P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})-{P_{out}^{F,\mathrm{odd}}}({\gamma _{\mathrm{th}}}) \end{aligned}$$
(65)

The OP in (64) for the even values of i can be obtained as

$$\begin{aligned} {P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})=&\sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}}}{{i!}}}\left( {\gamma _{\mathrm{th}}}\right) ^{\frac{i}{2}}\frac{{{b^n}}}{{\varGamma (n)}} \sum \limits _{k = 0}^j {\frac{{j!{C^k}}}{{k!\left( {j - k} \right) !}}} \int \limits _0^\infty { {u^{n - 2k - 1}}} {e^{ - bu - a\sqrt{{\gamma _{\mathrm{th}}}(1 + \frac{C}{{{u^{2}}}})}}}du \end{aligned}$$
(66)

where we set \(j = \frac{i}{2}\). Employing [35, Eqs. (1.39)], we can solve the integral in (66) in terms of Meijer’s-G function, defined in [32, Eq. (9.301)], as follows

$$\begin{aligned} {P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})&= \frac{{{b^n}}}{{\varGamma (n)}}\sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}\left( {\gamma _{\mathrm{th}}}\right) ^{\frac{i}{2}}}}{{i!}}} \sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) \int \limits _0^\infty {{u^{n - 2k - 1}}} G_{0,1}^{1,0}\nonumber \\&\left[ {{{\left( {{a^{2}}{\gamma _{\mathrm{th}}}\left( 1 + \frac{C}{{{u^{2}}}}\right) } \right) }^{\frac{1}{2}}}\left| {_0^ - } \right. } \right] G_{0,1}^{1,0}\left[ {bu\left| {_0^ - } \right. } \right] du \end{aligned}$$
(67)

The integral variable u can be substituted by \(\tau\) parameter with \({a^{2}}{\gamma _{\mathrm{th}}}\frac{C}{{{u^{2}}}} = \tau\). Then, we get

$$\begin{aligned} {P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})&= \frac{{{b^n}}}{{\varGamma (n)}}\sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}{\gamma _{\mathrm{th}}}^{\frac{i}{2}}}}{{i!}}{{({a^{2}}{\gamma _{\mathrm{th}}})}^{\frac{{n - 2k}}{2}}}} \sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) {C^k} \int \limits _0^\infty {{\tau ^{k - 1 - \frac{n}{2}}}} G_{0,1}^{1,0}\nonumber \\&\left[ {{{\left( {\sigma + \tau } \right) }^{\frac{1}{2}}}\left| {_0^ - } \right. } \right] G_{0,1}^{1,0}\left[ {\omega {\tau ^{ - \frac{1}{2}}}\left| {_0^ - } \right. } \right] d\tau \end{aligned}$$
(68)

By applying [39, Eq. (07.34.02.0001.01)] and [32, Eqs. (3.194.3, 8.384.1)] to (68) , we end up with

$$\begin{aligned} {P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})&= \frac{{{b^n}}}{{\varGamma (n)}}\sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}{\gamma _{\mathrm{th}}}^{\frac{i}{2}}}}{{i!}}{{({a^{2}}{\gamma _{\mathrm{th}}})}^{\frac{{n - 2k}}{2}}}} \sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) \frac{{{C^{\frac{n}{2}}}}}{{4{\pi ^{2}}}} \sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) \nonumber \\&\quad\times \int \limits _{{C_{1}}}\int \limits _{{C_{2}}}\varGamma \left( \frac{s}{2} - \frac{t}{2} - \alpha \right) \frac{{\varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) }}\varGamma (t)\varGamma (\alpha + \frac{t}{2}) \nonumber \\&\quad\times {{\left( \frac{{{\sigma ^{\frac{1}{2}}}}}{\omega }\right) }^t}{{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s}dsdt \end{aligned}$$
(69)

while the integral counters in s and t domains are denoted by \(C_{1}\) and \(C_{2}\), respectively. The integral form of bivariate Fox-H function in [33, Eq. (1.1)] can be applied to (69) to get

$$\begin{aligned} {P_{out}^{F,\mathrm{even}}}({\gamma _{\mathrm{th}}})&= \frac{{{b^n}}}{{\varGamma (n)}}\sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}{\gamma _{\mathrm{th}}}^{\frac{i}{2}}}}{{i!}}{{({a^{2}}{\gamma _{\mathrm{th}}})}^{\frac{{n - 2k}}{2}}}} \sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) {C^{\frac{n}{2}}}\sum \limits _{k = 0}^j \left( \begin{array}{l} j\\ k \end{array} \right) H_{1,0;0,2;1,2}^{0,1;1,0;1,1}\nonumber \\&\left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{1}{{\sqrt{\sigma }}}}\left| {_{( - ;0.5)}^{(1 + \alpha ;0.5, - 0.5),(1;1),(1;1)}} \right. } \right] \end{aligned}$$
(70)

If we set \(i = 2j + 1\) which corresponds to odd values of i, we obtain

$$\begin{aligned} {P_{out}^{F,\mathrm{odd}}}({\gamma _{\mathrm{th}}}) = \sum \limits _{i = 0}^{m - 1} {\frac{{{a^i}}}{{i!}}} \left( {\gamma _{\mathrm{th}}}\right) ^{\frac{i}{2}}\frac{{{b^n}}}{{\varGamma (n)}} \int \limits _0^\infty {{\gamma _{2}}^{\frac{n}{2} - 1}{{\left( 1 + \frac{C}{{{\gamma _{2}}}}\right) }^{\frac{{2j + 1}}{2}}}} {e^{ - b\sqrt{{\gamma _{2}}} - a\sqrt{\frac{{{\gamma _{\mathrm{th}}}({\gamma _{2}} + C)}}{{{\gamma _{2}}}}}}}d{\gamma _{2}} \end{aligned}$$
(71)

Applying the binomial expansion [39, Eq. (1.111)] and employing integration by part, the outage probability in (64) assuming odd values for i can be written as

$$\begin{aligned} {P_{out}^{F,\mathrm{odd}}}({\gamma _{th}})&= \sum \limits _{\underbrace{i = 1}_{i ~\mathrm {is ~ odd}}}^{m - 1} \sum \limits _{k = 0}^{j=\frac{i-1}{2}} {\frac{{{a^i}}}{{i!}}} \left( {\gamma _{th}}\right) ^{\frac{i}{2}}\frac{{{b^n}}}{{2\varGamma (n)}} {\frac{{j!{C^k}}}{{k!\left( {j - k} \right) !}}}\nonumber \\&\Bigg \{ - \frac{{2\left( \frac{n}{2} + 1 - k\right) }}{{aC\sqrt{{\gamma _{th}}} }}\int \limits _0^\infty {{\gamma _{2}}^{\frac{n}{2} - k}{e^{ - b\sqrt{{\gamma _{2}}} - a\sqrt{{\gamma _{th}}\left( 1 + \frac{C}{{{\gamma _{2}}}}\right) } }}} d{\gamma _{2}}\nonumber \\&\quad+\, \frac{b}{{aC\sqrt{{\gamma _{th}}}}}\int \limits _0^\infty {{\gamma _{2}}^{\frac{n}{2} + \frac{1}{2} - k}} {e^{ - b\sqrt{{\gamma _{2}}} - a\sqrt{{\gamma _{th}}\left( 1 + \frac{C}{{{\gamma _{2}}}}\right) }}}d{\gamma _{2}}\nonumber \\&\quad-\, \frac{{2\left( \frac{n}{2} - k\right) }}{{a\sqrt{{\gamma _{th}}}}}\int \limits _0^\infty {{\gamma _{2}}^{\frac{n}{2} - k - 1}} {e^{ - b\sqrt{{\gamma _{2}}} - a\sqrt{{\gamma _{th}}\left( 1 + \frac{C}{{{\gamma _{2}}}}\right) }}}d{\gamma _{2}}\nonumber \\&\quad+\, \frac{b}{{a\sqrt{{\gamma _{th}}}}}\int \limits _0^\infty {{\gamma _{2}}^{\frac{n}{2} - \frac{1}{2} - k}} {e^{ - b\sqrt{{\gamma _{2}}} - a\sqrt{{\gamma _{th}}\left( 1 + \frac{C}{{{\gamma _{2}}}}\right) }}}d{\gamma _{2}}\Bigg \} \end{aligned}$$
(72)

The same procedure that used in (67), (68) and (69) can be used in order to obtain the OP of fixed gain AF relaying for odd values of i. Finally, by substituting into (65) we get (8).

1.2 Proof of Proposition 2

By putting (4) and (5) in (64) and employing [39, Eq. (06.06.06.0001.02)], we get

$$\begin{aligned} {{P}_{out}^F}({{\gamma }_{\mathrm{th}}})&\approx \int \limits _{0}^{\infty }{\frac{{{\left( a\sqrt{\frac{{{\gamma }_{\mathrm{th}}}(C+{{\gamma }_{2}})}{{{\gamma }_{2}}}} \right) }^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}}{{({{\gamma }_{2}})}^{\frac{n}{2}-1}}{{e}^{-b\sqrt{{{\gamma }_{2}}}}}d{{\gamma }_{2}} \nonumber \\&\approx \frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}\int \limits _{0}^{\infty }{{{({{\gamma }_{2}}+C)}^{\frac{m}{2}}}{{\gamma }_{2}}^{\frac{n-m}{2}-1}}{{e}^{-b\sqrt{{{\gamma }_{2}}}}}d{{\gamma }_{2}} \end{aligned}$$
(73)

Using [35, Eq. (1.39)], the integral in (73) can be rewritten as follow

$$\begin{aligned} {P_{out}^F}({\gamma _{th}}) \approx \frac{{{{\left( {a\sqrt{{\gamma _{th}}} } \right) }^m}}}{{\varGamma (m + 1)}}\frac{{{b^n}}}{{2\varGamma (n)}}\int \limits _0^\infty {\frac{{{\gamma ^{\frac{{n - m}}{2} - 1}}}}{{{{\left( {\gamma + C} \right) }^{ - \frac{m}{2}}}}}} G_{0,1}^{1,0}\left[ {b\sqrt{\gamma } \left| {_0^ - } \right. } \right] d\gamma \end{aligned}$$
(74)

By applying [39, Eq. (07.34.21.0086.01)] to (74), we arrive to (9).

1.3 Proof of Proposition 3

This proposition can be proved by assuming even integer values of the fading severity parameter of the first link. Applying the binomial expansion [39, Eq. (1.111)], we end up with

$$\begin{aligned} {{P}_{out}^F}({{\gamma }_{\mathrm{th}}})&\approx \frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}\int \limits _{0}^{\infty }{{{({{x}^{2}}+C)}^{\frac{m}{2}}}{{x}^{n-m-1}}}{{e}^{-bx}}dx\nonumber \\&= \frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{\varGamma (n)}\int \limits _{0}^{\infty }{\sum \limits _{k=0}^{\frac{m}{2}}{\frac{\left( \frac{m}{2} \right) !}{k!\left( \frac{m}{2}-k \right) !}}{{x}^{2(\frac{m}{2}-k)}}{{C}^{k}}{{x}^{n-m-1}}}{{e}^{-bx}}dx \end{aligned}$$
(75)

Using the variable change method \(\sqrt{\gamma }=x\), we have

$$\begin{aligned} {{P}_{out}^F}({{\gamma }_{\mathrm{th}}})\approx \frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{\varGamma (n)}\sum \limits _{k=0}^{\frac{m}{2}}{\frac{\left( \frac{m}{2} \right) !{{C}^{k}}}{k!\left( \frac{m}{2}-k \right) !}}\int \limits _{0}^{\infty }{{{x}^{n-2k-1}}}{{e}^{-bx}}dx \end{aligned}$$
(76)

Applying [39, Eq. (3.351.3)] to (76), we arrive in (10).

1.4 Proof of Proposition 4

If we put (69) and (72) in (11), we can write

$$\begin{aligned} \overline{{{P}_{e}}}^F&= \frac{1}{2} + \frac{1}{2}\sqrt{\frac{d}{\pi }} \sum \limits _{\underbrace{i = 0}_{i ~\mathrm {is ~ even}}}^{m - 1} {\sum \limits _{k = 0}^{j=\frac{i}{2}} \left( \begin{array}{l} j\\ k \end{array} \right) \frac{{{a^i}}}{{i!}}} \frac{{{b^n}}}{{2\varGamma (n)}}\int \limits _0^\infty {\frac{{{e^{ - d\gamma }}{\gamma ^{\frac{i}{2}}}}}{{\sqrt{\gamma }}}} H_{1,0;0,2;1,2}^{0,1;1,0;1,1}\nonumber \\&\quad\times\left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{{\sqrt{d}}}{{\sqrt{\sigma }}}}\left| {_{( - ;0.5)}^{(1 + k - \frac{n}{2};0.5, - 0.5),(1;1),(1;1)}} \right. } \right] \nonumber \\&\quad +\,\frac{1}{2}\sqrt{\frac{d}{\pi }} \sum \limits _{\underbrace{i = 1}_{i ~\mathrm {is ~ odd}}}^{m - 1} {\sum \limits _{k = 0}^{j=\frac{i-1}{2}} \left( \begin{array}{l} j\\ k \end{array} \right) \frac{{{a^i}}}{{i!}}} \frac{{{b^n}}}{{2\varGamma (n)}}\int \limits _0^\infty {\frac{{{e^{ - d\gamma }}{\gamma ^{\frac{i}{2}}}}}{{\sqrt{\gamma }}}} \nonumber \\&\quad\times\Bigg \{ \frac{{2\left( \frac{n}{2} + 1 - k\right) }}{{a\sqrt{{\gamma }}}}H_{1,0;0,2;1,2}^{0,1;1,0;1,1} \left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{{\sqrt{d}}}{{\sqrt{\sigma }}}} \left| {_{( - ;0.5)}^{\left( k - \frac{n}{2};0.5, - 0.5\right) ,(1;1),(1;1)}} \right. } \right] \nonumber \\&\quad-\, \frac{{b{\sqrt{C}}}}{{a\sqrt{{\gamma }}}}H_{1,0;0,2;1,2}^{0,1;1,0;1,1} \left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{{\sqrt{d}}}{{\sqrt{\sigma }}}} \left| {_{( - ;0.5),}^{\left( k - \frac{{n + 1}}{2};0.5, - 0.5\right) ,(1;1),(1;1)}} \right. } \right] \nonumber \\ &\quad+\, \frac{{2\left( \frac{n}{2} - k\right) }}{{a\sqrt{{\gamma }}}}H_{1,0;0,2;1,2}^{0,1;1,0;1,1}\left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{{\sqrt{d}}}{{\sqrt{\sigma }}}}\left| {_{( - ;0.5)}^{(1 + k - \frac{n}{2};0.5, - 0.5),(1;1),(1;1)}} \right. } \right] \nonumber \\&-\, \frac{{b{\sqrt{C}}}}{{a\sqrt{{\gamma }}}}H_{1,0;0,2;1,2}^{0,1;1,0;1,1}\left[ {_{\frac{{\sqrt{\sigma }}}{\omega }}^{\frac{{\sqrt{d}}}{{\sqrt{\sigma }}}}\left| {_{( - ;0.5)}^{\left( k - \frac{{n - 1}}{2};0.5, - 0.5\right) ,(1;1),(1;1)}} \right. } \right] \Bigg \}d\gamma \end{aligned}$$
(77)

The integrals in (77) can be solved by applying [32, Eq. (3.351.3)]. Finally, utilizing [35, Eq. (2.56)], we get (12).

1.5 Proof of Proposition 5

By putting (9) in (11), we have

$$\begin{aligned} \overline{P_e}^F \approx \frac{1}{2}\sqrt{\frac{d}{\pi }} \int \limits _0^\infty {\frac{{{e^{ - d\gamma }}}}{{\sqrt{\gamma }}}} \frac{{{{(a\sqrt{{\gamma _{th}}} )}^m}}}{{\varGamma (m + 1)}}\frac{{{b^n}}}{{2\varGamma (n)}}\frac{{{C^{\frac{n}{2}}}}}{{\sqrt{\pi } \varGamma \left( - \frac{m}{2}\right) }}G_{1,3}^{3,1}\left[ {\frac{{{b^{2}}C}}{4}\left| {_{ - \frac{n}{2},0,\frac{1}{2}}^{1 - \left( \frac{{n - m}}{2}\right) }} \right. } \right] d\gamma \end{aligned}$$
(78)

The integral in [32, Eq. (3.381.4)] can be used to arrive us to (13).

1.6 Proof of Proposition 6

Putting (10) in (11), we obtain

$$\begin{aligned} \overline{{{P}_{e}}}^F&\approx \frac{1}{2}-\frac{1}{2}\sqrt{\frac{d}{\pi }}\frac{{{a}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{\varGamma (n)}\sum \limits _{k=0}^{\frac{m}{2}}{\frac{\left( \frac{m}{2} \right) !}{k!\left( \frac{m}{2}-k \right) !}} \frac{{{C}^{k}}\varGamma (n-2k)}{{{b}^{n-2k}}}\int \limits _{0}^{\infty }{{{\gamma }^{\frac{m-1}{2}}}{{e}^{-d\gamma }}d\gamma } \end{aligned}$$
(79)

Utilizing [32, Eq. (3.351.3)], we derive (79).

1.7 Proof of Proposition 7

By putting (69) and (72) in (16), we can obtain

$$\begin{aligned} \overline{C}^F&= \frac{{{b^n}{C^{\frac{n}{2}}}}}{{16{\pi ^{2}}\ln 2\varGamma (n)}} \sum \limits _{\underbrace{i = 0}_{i ~\mathrm {is ~ even}}}^{m - 1} {\sum \limits _{k = 0}^{j=\frac{i}{2}} \left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{{{a^i}}}{{i!}}} \int \limits _{{C_{1}}} \int \limits _{{C_{2}}} \frac{{\varGamma \left( \frac{s}{2} - \frac{t}{2} - \alpha \right) \varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) \varGamma (1 - s)}}\nonumber \\&\frac{{\varGamma (t)\varGamma \left( \alpha + \frac{t}{2}\right) }}{{\varGamma (1 - t)}}{{\left( \frac{{{\sigma ^{\frac{1}{2}}}}}{\omega }\right) }^t} {{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s} \times {{\varGamma \left( \frac{{i - s}}{2} + 1\right) \varGamma \left( - \frac{{i - s}}{2}\right) }}dsdt\nonumber \\&+ \frac{{{b^n}{C^{\frac{n}{2}}}}}{{16{\pi ^{2}}\ln 2\varGamma (n)}}\sum \limits _{\underbrace{i = 1}_{i ~\mathrm {is ~ odd}}}^{m - 1} {\sum \limits _{k = 0}^{j=\frac{i-1}{2}} \left( {\begin{array}{c}j\\ k\end{array}}\right) \frac{{{a^i}}}{{i!}}}\nonumber \\&\times \Bigg [\frac{{\left( \frac{n}{2} + 1 - k\right) }}{{ - 2a{\pi ^{2}}}} \int \limits _{{C_{1}}} \int \limits _{{C_{2}}} \frac{{\varGamma \left( \frac{s}{2} - \frac{t}{2} + 1 - \alpha \right) \varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) \varGamma (1 - s)}}\frac{{\varGamma (t)\varGamma \left( \alpha - 1 + \frac{t}{2}\right) }}{{\varGamma (1 - t)}}\nonumber \\&{{\left( \frac{{{\sigma ^{\frac{1}{2}}}}}{\omega }\right) }^t}{{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s} \frac{{\varGamma \left( \frac{{i - s + 1}}{2}\right) \varGamma \left( 1 - \frac{{i - s + 1}}{2}\right) }}{{\varGamma (1)}}dsdt\nonumber \\&+\frac{{b{\sqrt{C}}}}{{4a{\pi ^{2}}}}\int \limits _{{C_{1}}} \int \limits _{{C_{2}}} \frac{{\varGamma \left( \frac{s}{2} - \frac{t}{2} + \frac{3}{2} - \alpha \right) \varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) \varGamma (1 - s)}}\frac{{\varGamma (t)\varGamma \left( \alpha - \frac{3}{2} + \frac{t}{2}\right) }}{{\varGamma (1 - t)}}\nonumber \\&{{\left( \frac{{{\sigma ^{\frac{1}{2}}}}}{\omega }\right) }^t}{{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s}\frac{{\varGamma \left( \frac{{i - s + 1}}{2}\right) \varGamma \left( 1 - \frac{{i - s + 1}}{2}\right) }}{{\varGamma (1)}} dsdt\nonumber \\&+\,\frac{{\left( \frac{n}{2} - k\right) }}{{ - 2a{\pi ^{2}}}}\int \limits _{{C_{1}}} \int \limits _{{C_{2}}} \frac{{\varGamma \left( \frac{s}{2} - \frac{t}{2} - \alpha \right) \varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) \varGamma (1 - s)}} \frac{{\varGamma (t)\varGamma \left( \alpha + \frac{t}{2}\right) }}{{\varGamma (1 - t)}} {{(\frac{{{\sigma ^{\frac{1}{2}}}}}{\omega })}^t}{{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s} \nonumber \\&\frac{{\varGamma \left( \frac{{i - s + 1}}{2}\right) \varGamma \left( 1 - \frac{{i - s + 1}}{2}\right) }}{{\varGamma (1)}}dsdt\nonumber \\&+\,\frac{{b{\sqrt{C}}}}{{4a{\pi ^{2}}}} \int \limits _{{C_{1}}} \int \limits _{{C_{2}}} \frac{{\varGamma \left( \frac{s}{2} - \frac{t}{2} + \frac{1}{2} - \alpha \right) \varGamma (s)}}{{\varGamma \left( \frac{s}{2}\right) \varGamma (1 - s)}}\frac{{\varGamma (t)\varGamma (\alpha - \frac{1}{2} + \frac{t}{2})}}{{\varGamma (1 - t)}}{{\left( \frac{{{\sigma ^{\frac{1}{2}}}}}{\omega }\right) }^t}\nonumber \\&{{\left( \frac{1}{{{\sigma ^{\frac{1}{2}}}}}\right) }^s}\frac{{\varGamma \left( \frac{{i - s + 1}}{2}\right) \varGamma \left( 1 - \frac{{i - s + 1}}{2}\right) }}{{\varGamma (1)}} dsdt\Bigg ] \end{aligned}$$
(80)

The integrals in (80) are solved by using [32, Eqs. (3.241.2, 8.384.1)]. Utilizing [35, Eq. (2.56)], we get (19).

1.8 Proof of Proposition 8

By employing (20), the outage probability of CSI-assisted relaying SNR is obtained as follows

$$\begin{aligned} {{F}_{\gamma _{e2e}^{V}}}({{\gamma }_{\mathrm{th}}})=\Pr [\gamma _{e2e}^{V}<{{\gamma }_{\mathrm{th}}}]=\Pr [{{\gamma }_{1}}({{\gamma }_{2}}-{{\gamma }_{\mathrm{th}}})<{{\gamma }_{2}}{{\gamma }_{\mathrm{th}}}] \end{aligned}$$
(81)

Therefore, we end up with

$$\begin{aligned} {{F}_{\gamma _{e2e}^{V}}}({{\gamma }_{\mathrm{th}}})&= {{\mathbb E}_{{{\gamma }_{2}}}}\left[ \Pr ({{\gamma }_{1}}({{\gamma }_{2}}-{{\gamma }_{\mathrm{th}}})<{{\gamma }_{2}}{{\gamma }_{\mathrm{th}}})\left| {{\gamma }_{2}} \right. \right] \nonumber \\&= \underbrace{{{\mathbb E}_{{{\gamma }_{2}}}}\left[ \Pr \left( {{\gamma }_{1}}<\frac{{{\gamma }_{2}}{{\gamma }_{\mathrm{th}}}}{{{\gamma }_{2}}-{{\gamma }_{\mathrm{th}}}}\left| {{\gamma }_{2}}>{{\gamma }_{\mathrm{th}}} \right. \right) \right] }_I+{{F}_{{{\gamma }_{2}}}}\left( {{\gamma }_{\mathrm{th}}} \right) \end{aligned}$$
(82)

Substituting (4) and (5) into I and using [39, Eq. (06.06.06.0001.02)], we have (83) in our hands

$$\begin{aligned} I&= \int \limits _{{{\gamma }_{\mathrm{th}}}}^{\infty }{\frac{{{(a\sqrt{\frac{{{\gamma }_{2}}{{\gamma }_{\mathrm{th}}}}{{{\gamma }_{2}}-{{\gamma }_{\mathrm{th}}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}}{{({{\gamma }_{2}})}^{\frac{n}{2}-1}}{{e}^{-b\sqrt{{{\gamma }_{2}}}}}d{{\gamma }_{2}}\nonumber \\&= \frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}\int \limits _{{{\gamma }_{\mathrm{th}}}}^{\infty }{{{({{\gamma }_{2}}-{{\gamma }_{\mathrm{th}}})}^{-\frac{m}{2}}}{{\gamma }_{2}}^{\frac{n+m}{2}-1}}{{e}^{-b\sqrt{{{\gamma }_{2}}}}}d{{\gamma }_{2}} \end{aligned}$$
(83)

Utilizing [39, Eq. (07.34.02.0001.01)], (83) may be rewritten in terms of Meijer’s-G function as

$$\begin{aligned} I=\frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}\int \limits _{{{\gamma }_{\mathrm{th}}}}^{\infty }{{{\gamma }^{\frac{n+m}{2}-1}}{{(\gamma -{{\gamma }_{\mathrm{th}}})}^{-\frac{m}{2}}}}G_{0,1}^{1,0}\left[ b\sqrt{\gamma }\left| _{0}^{-} \right. \right] d\gamma \end{aligned}$$
(84)

By employing the integral in [39, Eq. (07.34.21.0085.01)], we obtain the first OP expression as in (21). The second expression of (82) can be expressed as

$$\begin{aligned} {{F}_{{{\gamma }_{2}}}}\left( {{\gamma }_{\mathrm{th}}} \right) =\frac{{{(a\sqrt{{{\gamma }_{\mathrm{th}}}})}^{m}}}{\varGamma (m+1)}\frac{{{b}^{n}}}{2\varGamma (n)}\int \limits _{0}^{\infty }{{{({{\gamma }_{2}})}^{\frac{n}{2}-1}}{{e}^{-b\sqrt{{{\gamma }_{2}}}}}d{{\gamma }_{2}}} \end{aligned}$$
(85)

By utilizing the variable change method \(\sqrt{\gamma }=x\) and applying [32, Eqs. (3.462.1, 9.240)], (85) can be simplified. Then by putting (85) and (84) in (82), we arrive in (21).

1.9 Proof of Proposition 9

Using (22), the outage probability of dual-hop AF relaying assuming CSI-assisted relaying technique is obtained as

$$\begin{aligned} {{P}_{out}^V}({{\gamma }_{\mathrm{th}}})={{F}_{{{\gamma }_{1}}}}({{\gamma }_{\mathrm{th}}})+{{F}_{{{\gamma }_{2}}}}({{\gamma }_{\mathrm{th}}})-{{F}_{{{\gamma }_{1}}}}({{\gamma }_{\mathrm{th}}}){{F}_{{{\gamma }_{2}}}}({{\gamma }_{\mathrm{th}}}) \end{aligned}$$
(86)

By employing (5), we can write

$$\begin{aligned} {{F}_{{{\gamma }_{1}}}}\left( \gamma \right) =1-{{e}^{-a\sqrt{\gamma }}}\sum \limits _{i=0}^{m-1}{\frac{{{a}^{i}}{\left( {\sqrt{\gamma }}\right) ^{i}}}{i!}} \end{aligned}$$
(87)
$$\begin{aligned} {{F}_{{{\gamma }_{2}}}}\left( \gamma \right) =1-{{e}^{-b\sqrt{\gamma }}}\sum \limits _{j=0}^{n-1}{\frac{{{b}^{j}}{\left( {\sqrt{\gamma }}\right) ^{j}}}{j!}} \end{aligned}$$
(88)

Substituting (87) and (88) into (86) results in (23).

1.10 Proof of Proposition 10

By putting (21) in (11), the symbol error probability of dual-hop CSI-assisted relaying can be expressed as

$$\begin{aligned} \overline{ P_e}^V&= \frac{1}{2}\sqrt{\frac{d}{\pi }} \int \limits _0^\infty {\frac{{{e^{ - d\gamma }}}}{{\sqrt{\gamma }}}} \left( \frac{{{{(a\sqrt{\gamma } )}^m}}}{{\varGamma (m + 1)}}\frac{{{b^n}}}{{2\varGamma (n)}}\frac{{\varGamma \left( - \frac{m}{2} + 1\right) }}{{\sqrt{\pi } {\gamma ^{ - \frac{n}{2}}}}}G_{1,3}^{3,0}\left[ {\frac{{{b^{2}}\gamma }}{4}\left| {_{\left( - \frac{n}{2},0,\frac{1}{2}\right) }^{\left( 1 - \frac{{m + n}}{2}\right) }} \right. } \right] \right. \nonumber \\&\left. + 1 - \frac{{\varGamma (n,b\sqrt{\gamma } )}}{{\varGamma (n)}} \right) d\gamma \end{aligned}$$
(89)

Applying [35, Eq. (1.39)] and [39, Eq. (07.34.21.0088.01)], we get (24).

1.11 Proof of Proposition 11

By putting (23) in (11), the symbol error probability of dual-hop CSI-assisted relaying is obtained as

$$\begin{aligned} \overline{{{P}_{e}}}^V=\frac{1}{2}-\frac{1}{2}\sqrt{\frac{d}{\pi }}\sum \limits _{i=0}^{m-1}{\sum \limits _{j=0}^{n-1}{\frac{{{a}^{i}}{{b}^{j}}}{i!j!}}}\int \limits _{0}^{\infty }{\frac{{{e}^{-d\gamma }}}{\sqrt{\gamma }}}{{e}^{-(a+b)\sqrt{\gamma }}}{{\left( \gamma \right) }^{\frac{i+j}{2}}}d\gamma \end{aligned}$$
(90)

By utilizing the variable change method \(x=\sqrt{\gamma },\) and applying [32, Eq. (8.310.1)] and following some mathematical manipulations, we get (25).

1.12 Proof of Proposition 12

Substituting (21) into (16), the average channel capacity of dual-hop CSI-assisted AF relaying is derived by

$$\begin{aligned} \overline{C}^V = \frac{1}{{2\ln 2}}\int \limits _0^\infty {\frac{{\left[ { - \frac{{{{(a\sqrt{\gamma } )}^m}}}{{\varGamma (m + 1)}}\frac{{{b^n}}}{{2\varGamma (n)}}\frac{{\varGamma ( - \frac{m}{2} + 1)}}{{\sqrt{\pi } {\gamma ^{ - \frac{n}{2}}}}}G_{1,3}^{3,0}\left[ {\frac{{{b^{2}}{\gamma _{\mathrm{th}}}}}{4}\left| {_{ - \frac{n}{2},0,\frac{1}{2}}^{1 - \frac{{m + n}}{2}}} \right. } \right] + \frac{{\varGamma (n,b\sqrt{\gamma } )}}{{\varGamma (n)}}} \right] }}{{1 + \gamma }}} d\gamma \end{aligned}$$
(91)

By applying [35, Eq. (07.34.21.0011.01)] and [32, Eq. (3.389.6)], (26) is derived.

1.13 Proof of Proposition 13

By putting (23) in (16), the average channel capacity of dual-hop CSI-assisted relaying can be expressed as

$$\begin{aligned} {\bar{C}^V} = \frac{1}{{2\ln 2}}\sum \limits _{k = 0}^{m - 1} {\sum \limits _{j = 0}^{n - 1} {\frac{{{a^k}{b^j}}}{{k!j!}}} } \int \limits _0^\infty {\frac{{{e^{ - (a + b)\sqrt{\gamma }}}{{\left( \gamma \right) }^{\frac{{k + j}}{2}}}}}{{1 + \gamma }}} \end{aligned}$$
(92)

Utilizing the variable change method \(x=\sqrt{\gamma }\) and applying [32, Eq. (3.389.2.7)], we end up with (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani-Nasab, E., Abbaspour, M. A Framework on the Performance Analysis of Cooperative Wireless Body Area Networks. Wireless Pers Commun 117, 689–725 (2021). https://doi.org/10.1007/s11277-020-07893-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07893-z

Keywords

Navigation