Skip to main content
Log in

Low-Profile Parallel Mutually Coupled Triple-Band Antenna for Telecommunications Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact dual parallel slotted-patch antenna having a single offset feed on the corner side is presented. The antenna geometry comprises parallel and horizontal coupled S dual slotted structure at the top, with a complete ground plane at the bottom, which is oriented to enhance the multiband frequency bands. The patch is patterned on an FR4 substrate having a dielectric constant of 4.4 and loss tangent of 0.02. The antenna has overall dimensions of 36 × 28 × 1.6 mm3, with an offset feed which is optimized to achieve 50 Ω impedance matching. The proposed antenna is simulated using a FEM-based high-frequency structure simulator, after which it is optimized, fabricated, and measured, with the simulated and measured results showing good agreement. The proposed compact antenna resonates in the pentaband frequency range which includes 2.00–2.16 GHz local TV transmission, 3.14–3.23 GHz for radio-frequency identification and detection, and 4.34–4.61 GHz for long-distance radio telecommunications. The antenna shows good gain ranging from 0.5 to 3.5 dBi with omnidirectional and bidirectional radiation patterns, making it suitable for its use in wireless applications with space constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mak, A. C., Rowell, C. R., Murch, R. D., & Mak, C. L. (2007). Reconfigurable multiband antenna designs for wireless communication devices. IEEE Transactions on Antennas and Propagation, 55(7), 1919–1928.

    Article  Google Scholar 

  2. Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2.

    Article  Google Scholar 

  3. Shinde, P. N., & Shinde, J. P. (2015). Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications. AEU-International Journal of Electronics and Communications, 69(10), 1489–1494.

    Article  Google Scholar 

  4. Daniel, R. S., Pandeeswari, R., & Raghavan, S. (2017). Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations. AEU-International Journal of Electronics and Communications, 78, 72–78.

    Article  Google Scholar 

  5. Srivastava, K., Kumar, A., Kanaujia, B. K., Dwari, S., & Kumar, S. (2018). Multiband integrated wideband antenna for bluetooth/WLAN applications. AEU-International Journal of Electronics and Communications, 89, 77–84.

    Article  Google Scholar 

  6. Inthachot, M., Boonjing, V., & Intakosum, S. (2015). Predicting SET50 index trend using artificial neural network and support vector machine. In M. Ali, Y. S. Kwon, C.-H. Lee, J. Kim, & Y. Kim (Eds.), Current approaches in applied artificial intelligence (pp. 404–414). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  7. Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958.

    Article  MathSciNet  Google Scholar 

  8. Wong, K. L., & Lee, L. C. (2009). Multiband printed monopole slot antenna for WWAN operation in the laptop computer. IEEE Transactions on Antennas and Propagation, 57(2), 324–330.

    Article  Google Scholar 

  9. Sun, X. L., Cheung, S. W., & Yuk, T. I. (2013). Dual-band monopole antenna with frequency-tunable feature for WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 100–103.

    Article  Google Scholar 

  10. Chang, C. H., & Wong, K. L. (2009). Printed λ/8-PIFA for penta-band WWAN operation in the mobile phone. IEEE Transactions on Antennas and Propagation, 57(5), 1373–1381.

    Article  Google Scholar 

  11. Ciais, P., Staraj, R., Kossiavas, G., & Luxey, C. (2004). Compact internal multiband antenna for mobile phone and WLAN standards. Electronics Letters, 40(15), 920–921.

    Article  Google Scholar 

  12. Patel, R. H., Desai, A., & Upadhyaya, T. K. (2018). An electrically small antenna using defected ground structure for RFID, GPS And IEEE 802. 11 A/B/G/S applications. Progress in Electromagnetics Research, 75, 75–81.

    Article  Google Scholar 

  13. Antoniades, M. A., & Eleftheriades, G. V. (2008). A compact multiband monopole antenna with a defected ground plane. IEEE Antennas and Wireless Propagation Letters, 7, 652–655.

    Article  Google Scholar 

  14. Jung, C. W., Kim, Y. E., Park, S. H., Samsung Electronics Co Ltd, (2009). Multiband antenna with removed coupling. U.S. Patent 7,522,119.

  15. Patel, R. H., Upadhyaya, T., & Desai, A. (2018). Electrically small inverted L planar patch antenna for wireless application. Microwave and Optical Technology Letters, 60(10), 2351–2357.

    Article  Google Scholar 

  16. Haider, N., Caratelli, D., Yarovoy, A. G. (2013). Recent developments in reconfigurable and multiband antenna technology. International Journal of Antennas and Propagation.

  17. Patel, R., & Upadhyaya, T. (2018). An electrically small antenna for nearfield biomedical applications. Microwave and Optical Technology Letters, 60(3), 556–561.

    Article  Google Scholar 

  18. Patel, R. H., Desai, A. H., & Upadhyaya, T. (2015). Design of H-shape X-band application electrically small antenna. International Journal of Electrical Electronics And Data Communication (IJEEDC), 3, 1–4.

    Google Scholar 

  19. Patel, R. H., Desai, A., & Upadhyaya, T. (2015). A discussion on electrically small antenna property. Microwave and Optical Technology Letters, 57(10), 2386–2388.

    Article  Google Scholar 

  20. Joyal, M. A., & Laurin, J. J. (2012). Analysis and design of thin circular polarizers based on meander lines. IEEE Transactions on Antennas and Propagation, 60(6), 3007–3011.

    Article  Google Scholar 

  21. Yeganeh, A. N., Najmolhoda, S. H., Sedighy, S. H., & Mohammd-Ali-Nezhad, S. (2018). Design of a compact planar wide band antenna family. AEU-International Journal of Electronics and Communications, 83, 280–287.

    Article  Google Scholar 

  22. Patel, R., Upadhyaya, T., & Desai, A. (2019). A miniaturized parallel ring coupling high gain antenna for biomedical applications. Microwave and Optical Technology Letters, 61(3), 649–653.

    Article  Google Scholar 

  23. Aguilar, S. M., Al-Joumayly, M. A., Burfeindt, M. J., Behdad, N., & Hagness, S. C. (2014). Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array. IEEE Transactions on Antennas and Propagation, 62(3), 1221–1231.

    Article  Google Scholar 

  24. Chamaani, S., & Akbarpour, A. (2015). Miniaturized dual-band omnidirectional antenna for body area network base stations. IEEE Antennas and Wireless Propagation Letters, 14, 1722–1725.

    Article  Google Scholar 

  25. Fathima, N., Nayana, K. S., Ali, T., Biradar, R. C. (2017) A miniaturized slotted ground fractal Koch multiband antenna for wireless applications. In IEEE international conference on recent trends in electronics, information & communication technology (RTEICT), Bangalore, pp. 251–255.

  26. Desai, A., Upadhyaya, T., & Patel, R. (2019). Compact wideband transparent antenna for 5G communication systems. Microwave and Optical Technology Letters, 61(3), 781–786.

    Article  Google Scholar 

  27. Ahsan, M. R., Islam, M. T., & Ullah, M. H. (2015). Computational and experimental analysis of high gain antenna for WLAN/WiMAX applications. Journal of Computational Electronics, 14(2), 634–641.

    Article  Google Scholar 

  28. Boukarkar, A., Lin, X. Q., Jiang, Y., & Yu, Y. Q. (2017). Miniaturized single-feed multiband patch antennas. IEEE Transactions on Antennas and Propagation, 65(2), 850–854.

    Article  Google Scholar 

  29. Patel, R., Upadhyaya, T., Desai, A., & Palandoken, M. (2019). Low profile multiband meander antenna for LTE/WiMAX/WLAN and INSAT-C application. AEU-International Journal of Electronics and Communications, 102, 90–98.

    Article  Google Scholar 

  30. Saraswat, R. K., & Kumar, M. (2016). Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications. Progress in Electromagnetics Research, 65, 65–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riki Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Desai, A. & Upadhyaya, T. Low-Profile Parallel Mutually Coupled Triple-Band Antenna for Telecommunications Applications. Wireless Pers Commun 117, 945–956 (2021). https://doi.org/10.1007/s11277-020-07904-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07904-z

Keywords