Skip to main content
Log in

Proposed Prediction Framework for Improving the Accuracy of Path loss Models of WiMAX Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Worldwide interoperability for Microwave Access (WiMAX) is an advanced wireless broadband access technology for delivering high speed voice, video and multimedia access for fixed as well as mobile users. Planning and deployment of this network is considered as a crucial challenge because it depends upon the accurate estimation of parameters such as link budget, coverage area, capacity, capital expenditure and operational expenditure etc. However, estimation of the above mentioned parameters is substantially relied on accuracy of predicted path loss model between the base station and the receiver. From data analysis theory, it is found that the presence of outliers in data set have notable impact on the correctness of predicted models. Hence, in this paper a prediction framework is proposed which suggests the inclusion of outlier removal algorithm along with data collection, statistical analysis and regression analysis for improving the accuracy of path loss model. Several measurement campaigns are conducted in a WiMAX network deployed in a suburban area for collection of data such as received signal strength indicator (RSSI), and carrier to interference plus noise ratio (CINR). Further, the impact of proposed framework in improving the accuracy of predicted RSSI, CINR and path loss models for the concerned scenario is investigated through simulation based study. Also, the impact of proposed algorithm on probability density function of path loss as well as link budget performance is investigated. From the result analysis, it is observed that the estimated path loss model closes to SUI A path loss model and SUI C path loss model without and with using the proposed approach respectively. Further, the path loss exponents of the predicted path loss models are evaluated as 3.78 and 3.47 without and with utilizing the proposed framework respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  2. Wang, C. X., Bian, J., Sun, J., Zhang, W., & Zhang, M. (2018). A survey of 5G channel measurements and models. IEEE Communications Surveys and Tutorials, 20(4), 3142–3168. https://doi.org/10.1109/COMST.2018.2862141

    Article  Google Scholar 

  3. Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., & Ghosh, A. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935. https://doi.org/10.1109/JSAC.2017.2719924

    Article  Google Scholar 

  4. Kurt, S., & Tavli, B. (2017). Path loss modeling for wireless sensor networks: A review of models and comparative evaluations. IEEE Antennas and Propagation Magazine, 59(1), 18–37. https://doi.org/10.1109/MAP.2016.2630035

    Article  Google Scholar 

  5. Al-Hourani, A., & Gomez, K. (2018). Modeling cellular to UAV path loss for suburban environments. IEEE Wireless Communications Letters, 7(1), 82–85. https://doi.org/10.1109/LWC.2017.2755643

    Article  Google Scholar 

  6. Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M. S., & Dobbins, P. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys and Tutorials, 20(4), 2804–2821. https://doi.org/10.1109/COMST.2018.2856587

    Article  Google Scholar 

  7. Wang, C. X., Ghazal, A., Ai, B., Liu, Y., & Fan, P. (2015). Channel measurements and models for high speed train communication systems: A survey. IEEE Communications Surveys & Tutorials, 18(2), 974–987.

    Article  Google Scholar 

  8. Joe, J., Hazra, S. K., Toh, S. H., Tan, W. M., Shankar, J., Hoang, V. D., & Fujise, M. (2007). Path loss measurements in sea port for WiMAX. In IEEE Wireless Communications and Networking Conference (WCNC), Kowloon (pp. 1873–1878). https://doi.org/10.1109/WCNC.2007.351.

  9. Jorge, E., Rodrigues, B., Anatel, J. B. R., Cavalcante, G. A., & Costa, J. (2008). Capacity analysis and coverage comparison for IMT-2000 systems in Brazilian cities. In 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Dalian. (pp. 4–7). https://doi.org/10.1109/WiCom.2008.33.

  10. Mar, J., Ko, C. C., Li, C. H., & Chen, S. E. (2009). Cell planning and channel throughput of Mobile WiMAX at 2.5 GHz. Journal of the Chinese Institute of Engineers, 32(5), 585–597. https://doi.org/10.1080/02533839.2009.9671542

    Article  Google Scholar 

  11. Voldhaug, J. E., Braten, L. E., & Sander, J. (2010). Deployable WiMAX in a forest area; channel measurements and modelling. In IEEE Military Communications Conference (MILCOM), San Jose (pp. 2400–2405). https://doi.org/10.1109/MILCOM.2010.5680326.

  12. Dalela, C., Prasad, M., Dalela, P. K., & Saraf, R. (2011). Analysis of WiMAX Radio measurements and comparison with some models over dense urban Western India at 2.3 GHz. IEEE Antennas and Wireless Propagation Letters, 10, 730–733. https://doi.org/10.1109/LAWP.2011.2162480

    Article  Google Scholar 

  13. Chee, K. L., Torrico, S. A., & Kurner, T. (2011). Foliage attenuation over mixed terrains in rural areas for broadband wireless access at 3.5 GHz. IEEE Transactions on Antennas and Propagation, 59(7), 2698–2706. https://doi.org/10.1109/TAP.2011.2152340

    Article  Google Scholar 

  14. Ahmed, B. T., Campos, J. L. M., & Mayordomo, J. M. L. (2012). Propagation path loss and materials insertion loss in indoor environment at WiMAX band of 3.3 to 3.6 GHz. Wireless Personal Communications, 66(2), 251–260. https://doi.org/10.1007/s11277-011-0335-2

    Article  Google Scholar 

  15. Sharma, S., & Singh, B. (2013). Experimental study of a fixed WiMAX network at 2.62 GHz. Wireless Personal Communications, 72(4), 2127–2141. https://doi.org/10.1007/s11277-013-1139-3

    Article  Google Scholar 

  16. Alqudah, Y. A. (2013). Path loss modeling based on field measurements using deployed 3.5 GHz WiMAX network. Wireless Personal Communications, 69(2), 793–803. https://doi.org/10.1007/s11277-012-0612-8

    Article  Google Scholar 

  17. Singh, B., & Sharma, S. (2014). Optimising capacity–coverage of a fixed WiMAX network. IET Microwaves, Antennas & Propagation, 8(10), 708–713. https://doi.org/10.1049/iet-map.2013.0260

    Article  Google Scholar 

  18. Swain, C. M. K., & Das, S. (2015). Development of an empirical path loss model for a deployed 2.63 GHz WiMAX network in a rural environment. In IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar (pp. 355–360). https://doi.org/10.1109/PCITC.2015.7438191.

  19. Zineb, A. B., & Ayadi, M. (2016). A multi-wall and multi-frequency indoor path loss prediction model using artificial neural networks. Arabian Journal for Science and Engineering, 41(3), 987–996. https://doi.org/10.1007/s13369-015-1949-6

    Article  Google Scholar 

  20. Ayadi, M., Ben Zineb, A., & Tabbane, S. (2017). A UHF path loss model using learning machine for heterogeneous networks. IEEE Transactions on Antennas and Propagation, 65(7), 3675–3683. https://doi.org/10.1109/TAP.2017.2705112

    Article  MathSciNet  MATH  Google Scholar 

  21. Popoola, S. I., Misra, S., & Atayero, A. A. (2018). Outdoor path loss predictions based on extreme learning machine. Wireless Personal Communications, 99(1), 441–460. https://doi.org/10.1007/s11277-017-5119-x

    Article  Google Scholar 

  22. Popoola, S. I., Atayero, A. A., & Popoola, O. A. (2018). Comparative assessment of data obtained using empirical models for path loss predictions in a university campus environment. Data In Brief, 18, 380–393. https://doi.org/10.1016/j.dib.2018.03.040

    Article  Google Scholar 

  23. Almalki, F. A., & Angelides, M. C. (2019). A machine learning approach to evolving an optimal propagation model for last mile connectivity using low altitude platforms. Computer Communications, 142, 9–33. https://doi.org/10.1016/j.comcom.2019.04.001

    Article  Google Scholar 

  24. Zhang, Y., Wen, J., Yang, G., He, Z., & Wang, J. (2019). Path loss prediction based on machine learning: Principle, method, and data expansion. Applied Sciences, 9(9), 1908. https://doi.org/10.3390/app9091908

    Article  Google Scholar 

  25. Ahmadien, O., Ates, H. F., Baykas, T., & Gunturk, B. K. (2020). Predicting path loss distribution of an area from satellite images using deep learning. IEEE Access, 8, 64982–64991. https://doi.org/10.1109/ACCESS.2020.2985929

    Article  Google Scholar 

  26. Jo, H. S., Park, C., Lee, E., Choi, H. K., & Park, J. (2020). Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and Gaussian process. Sensors, 20(7), 1927. https://doi.org/10.3390/s20071927

    Article  Google Scholar 

  27. Swain, C. M. K., & Das, S. (2018). Estimation of path loss model for a 2.65 GHz mobile WiMAX network deployed in a suburban environment with regression techniques. Wireless Personal Communications, 99(1), 283–297. https://doi.org/10.1007/s11277-017-5059-5

    Article  Google Scholar 

  28. Lourenço, A., Silva, H., & Carreiras, C. (2013). Outlier detection in non-intrusive ECG biometric system. In International Conference Image Analysis and Recognition (pp. 43–52). Springer. https://doi.org/10.1007/978-3-642-39094-4_6.

  29. Zhang, Y., Meratnia, N., & Havinga, P. J. M. (2010). Outlier detection techniques for wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 12(2), 159–170. https://doi.org/10.1109/SURV.2010.021510.00088

    Article  Google Scholar 

  30. Gogoi, P., Bhattacharyya, D. K., Borah, B., & Kalita, J. K. (2011). A survey of outlier detection methods in network anomaly identification. The Computer Journal, 54(4), 570–588. https://doi.org/10.1093/comjnl/bxr026

    Article  Google Scholar 

  31. Athanasiadou, G. E., Nix, A. R., & McGeehan, J. P. (2000). A microcellular ray-tracing propagation model and evaluation of its narrowband and wideband predictions. IEEE Journal on Selected Areas in Communications, 18(3), 322–335. https://doi.org/10.1109/49.840192

    Article  Google Scholar 

  32. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: understanding broadband wireless networking. Perason: Prentice Hall PTR. https://doi.org/10.1002/ctpp.200610002

    Book  Google Scholar 

  33. García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Berlin: Springer.

    Book  Google Scholar 

  34. Stevens, J. P. (1984). Outliers and influential data points in regression analysis. Psychological Bulletin, 95(2), 334–344. https://doi.org/10.1037/0033-2909.95.2.334

    Article  Google Scholar 

  35. Pearson, R. K. (2002). Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology, 10(1), 55–63. https://doi.org/10.1109/87.974338

    Article  Google Scholar 

  36. Akobeng, A. K. (2016). Understanding Type I and Type II errors, statistical power and sample size. Acta Paediatrica. https://doi.org/10.1111/apa.13384

    Article  Google Scholar 

  37. Seo, S., & Gary M. M, (2006). A review and comparison of methods for detecting outliers in Univariate data sets. Department of Biostatistics, Graduate School of Public Health.

  38. Ivanushkin, M. A., Volgin, S. S., Kaurov, I. V., & Tkachenko, I. S. (2019). Analysis of statistical methods for outlier detection in telemetry data arrays obtained from AIST small satellites. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1326/1/012029

    Article  Google Scholar 

  39. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley. https://doi.org/10.1002/0471715220

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaudhuri Manoj Kumar Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, C.M.K., Das, S. Proposed Prediction Framework for Improving the Accuracy of Path loss Models of WiMAX Network. Wireless Pers Commun 117, 1079–1101 (2021). https://doi.org/10.1007/s11277-020-07912-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07912-z

Keywords

Navigation