Skip to main content

Advertisement

Log in

Enhancement of Efficiency and Performance Gain of Massive MIMO System Using Trial-Based Rider Optimization Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Massive multiple-input multiple output (mMIMO) is considered as one of the most in demand and innovative technologies for the fifth-generation wireless communication systems. This paper attempts to frame a mMIMO system model, intends to improve the spectral efficiency, energy efficiency and performance gain. Here, the system performance achievements are premeditated in a multi-cell downlink mMIMO system under the core considerations such as “imperfect channel estimation, perfect channel estimation and the effect of interference among cells due to pilot sequences contamination”. The performance gains such as “spatial multiplexing gain, array gain and spatial diversity gain” are considered to maximize in this paper. For attaining this multi-objective function, an improved meta-heuristic algorithm called rider optimization algorithm (ROA) known as trial-based ROA adopted, and analyse the performance of the proposed model by comparing over existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paulraj, A. J., Gore, D. A., Nabar, R. U., & Bolcskei, H. (2004). An overview of MIMO communications - a key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.

    Article  Google Scholar 

  2. Xing, C., Ma, S., & Zhou, Y. (2015). Matrix-monotonic optimization for MIMO systems. IEEE Transactions on Signal Processing, 63(2), 334–348.

    Article  MathSciNet  Google Scholar 

  3. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  4. Zhang, J., Wen, C., Jin, S., Gao, X., & Wong, K. (2013). On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE Journal on Selected Areas in Communications, 31(2), 133–148.

    Article  Google Scholar 

  5. Yin, H., Gesbert, D., Filippou, M., & Liu, Y. (2013). A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE Journal on Selected Areas in Communications, 31(2), 264–273.

    Article  Google Scholar 

  6. Ma, Z., Zhang, Z. Q., Ding, Z. G., Fan, P. Z., & Li, H. C. (2015). Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Science China Information Sciences, 58(4), 1–20.

    Article  Google Scholar 

  7. Padarti, V. K., & Rao, N. V. (2020). (2020) Adaptive SOICAF algorithm for PAPR mitigation in OFDM systems. Wireless Personal Communication, 113, 927–943. https://doi.org/10.1007/s11277-020-07260-y

    Article  Google Scholar 

  8. Yang, A., He, Z., Xing, C., Fei, Z., & Kuang, J. (2016). The role of large-scale fading in uplink massive MIMO systems. IEEE Transactions on Vehicular Technology, 65(1), 477–483.

    Article  Google Scholar 

  9. Alouini, M., & Goldsmith, A. (1997). Area spectral efficiency of cellular mobile radio systems. In 1997 IEEE 47th Vehicular Technology Conference (vol. 2). Technology in Motion, Phoenix, AZ, USA (pp. 652–656).

  10. Zhang, L., Yang, H., & Hasna, M. O. (2014). Generalized area spectral efficiency: An effective performance metric for green wireless communications. IEEE Transactions on Communications, 62(2), 747–757.

    Article  Google Scholar 

  11. Fei, Z. S., Ding, H. C., Xing, C. W., Ni, J. Q., & Kuang, J. M. (2014). Performance analysis for range expansion in heterogeneous networks. Science China Information Sciences, 57(8), 1–10.

    Article  Google Scholar 

  12. Yang, J., Fan, P., Duong, T. Q., & Lei, X. (2011). Exact performance of two-way AF relaying in Nakagami-m fading environment. IEEE Transactions on Wireless Communications, 10(3), 980–987.

    Article  Google Scholar 

  13. Zhang, H., Xing, H., Cheng, J., Nallanathan, A., & Leung, V. C. M. (2016). Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Transactions on Industrial Informatics, 12(5), 1714–1725.

    Article  Google Scholar 

  14. Cui, H., Song, L., & Jiao, B. (2014). Multi-pair two-way amplify-and-forward relaying with very large number of relay antennas. IEEE Transactions on Wireless Communications, 13(5), 2636–2645.

    Article  Google Scholar 

  15. Dai, Y., & Dong, X. (2016). Power allocation for multi-pair massive MIMO two-way AF relaying with linear processing. IEEE Transactions on Wireless Communications, 15(9), 5932–5946.

    Article  Google Scholar 

  16. Ngo, H. Q., Suraweera, H. A., Matthaiou, M., & Larsson, E. G. (2014). Multipair full-duplex relaying with massive arrays and linear processing. IEEE Journal on Selected Areas in Communications, 32(9), 1721–1737.

    Article  Google Scholar 

  17. Zhao, L., Zheng, K., Long, H., Zhao, H., & Wang, W. (2014). Performance analysis for downlink massive multiple-input multiple-output system with channel state information delay under maximum ratio transmission precoding. IET Communications, 8(3), 390–398.

    Article  Google Scholar 

  18. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  Google Scholar 

  19. Shi, C., Qiu, W., Wang, F., Salous, S. & Zhou, J. (2019). Power control scheme for spectral coexisting multistatic radar and massive MIMO communication systems under uncertainties: A robust Stackelberg game model. Digital Signal Processing. Available online, 15 May 2019.

  20. Saba, J., & Yu, L. (2016). Analysis and evaluation of performance gains and tradeoffs for massive MIMO systems. Applied Sciences, 6, 268.

    Article  Google Scholar 

  21. Hao, W., Zeng, M., Chu, Z., & Yang, S. (2017). Energy-efficient power allocation in millimeter wave massive MIMO with non-orthogonal multiple access. IEEE Wireless Communications Letters, 6(6), 782–785.

    Article  Google Scholar 

  22. Yang, J., Wang, H., Ding, J., Gao, X., & Ding, Z. (2017). Spectral and energy efficiency analysis for massive MIMO multi-pair two-way relaying networks under generalized power scaling. Science China Information Sciences.

  23. Xin, Y., Wang, D., Li, J., Zhu, H., Wang, J., & You, X. (2016). Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Transactions on Vehicular Technology, 65(5), 3243–3254.

    Article  Google Scholar 

  24. Panda, S. (2018). Performance optimization of cell-free massive MIMO system with power control approach. AEU—International Journal of Electronics and Communications, 97, 210–219.

    Article  Google Scholar 

  25. Roshandeh, K. P., Kuhestani, A., Ardakani, M., & Tellambura, C. (2017). Ergodic sum rate analysis and efficient power allocation for a massive MIMO two-way relay network. IET Communications, 11(2), 211–217.

    Article  Google Scholar 

  26. Cui, Q., Liu, Y., Liu, Y., Xie, W., & Zhao, Y. (2018). Multi-pair massive MIMO amplify-and-forward relaying system with low-resolution ADCs: Performance analysis and power control. Science China Information Sciences

  27. Padarti, V. K., & Rao, N. V. (2020). Adaptive SOICAF algorithm for PAPR mitigation in OFDM systems. Wireless Personal Communications, 113, 927–943. https://doi.org/10.1007/s11277-020-07260-y.

    Article  Google Scholar 

  28. Gao, X., Dai, L., Han, S., I, C.-L., & Heath, R. W. (2016). Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE Journal on Selected Areas in Communications, 34(4), 998–1009.

    Article  Google Scholar 

  29. Binu, D. & Kariyappa, B. S. (2018) RideNN: A new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Transactions on Instrumentation and Measurement.

  30. Pedersen, M. E. H., & Chipperfield, A. J. (2010). Simplifying particle swarm optimization. Applied Soft Computing, 10(2), 618–628.

    Article  Google Scholar 

  31. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  32. Boothalingam, R. (2018). Optimization using lion algorithm: A biological inspiration from lion’s social behavior. Evolutionary Intelligence, 11(1–2), 31–52.

    Article  Google Scholar 

  33. Nimmagadda, S. M. (2020). Optimal spectral and energy efficiency trade-off for massive MIMO technology: analysis on modified lion and grey wolf optimization. Soft Comput, 24, 12523–12539. https://doi.org/10.1007/s00500-020-04690-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayana Murthy Nimmagadda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmagadda, S.M. Enhancement of Efficiency and Performance Gain of Massive MIMO System Using Trial-Based Rider Optimization Algorithm. Wireless Pers Commun 117, 1259–1277 (2021). https://doi.org/10.1007/s11277-020-07921-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07921-y

Keywords

Navigation