Skip to main content
Log in

Design and Modeling of a Compact Power Divider with Squared Resonators Using Artificial Intelligence

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel miniaturized microstrip Wilkinson power divider (WPD) using squared resonators and open-ended stubs is designed, fabricated, and measured. The proposed divider is designed at 1.9 GHz, which suppresses 2nd, 3rd, and 4th harmonics with high attenuation levels. Moreover, the size of the proposed divider is only 0.1 λg × 0.07  λg, which reduces the circuit size by more than 55%, compared to the conventional Wilkinson divider. In the design process, the neural network model and LC-equivalent circuit model are used to predict the transmission zeros of the circuit. These transmission zeros are used to provide the suppression at the desired harmonics. Also, the main circuit elements could be predicted with the neural network model, which results in a performance improvement of the proposed divider. The results show that the proposed model can predict the frequency response of the designed WPD, accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Roshani, S. (2017). A Wilkinson power divider with harmonics suppression and size reduction using meandered compact microstrip resonating cells. Frequenz, 71(11–12), 517–522.

    Google Scholar 

  2. Heydari, M., Rostami, P., & Roshani, S. (2019). Design of a modified wilkinson power divider with size reduction and harmonics suppression using triangle-shaped resonators. Wireless Personal Communications, 109(3), 1–9.

    Article  Google Scholar 

  3. Jamshidi, M., Siahkamari, H., Roshani, S., & Roshani, S. (2019). A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics, 39(7), 491–504.

    Article  Google Scholar 

  4. Roshani, S., Hayati, M., Setayeshi, S., Roshani, S., & Mohamadpour, G. A. (2016). Miniaturized harmonic suppressed power amplifier integrated with lowpass filter for long term evolution application. Analog Integrated Circuits and Signal Processing, 89(1), 197–204.

    Article  Google Scholar 

  5. Roshani, S., Roshani, S., & Zarinitabar, A. (2019). A modified Wilkinson power divider with ultra harmonic suppression using open stubs and lowpass filters. Analog Integrated Circuits and Signal Processing, 98(2), 395–399.

    Article  Google Scholar 

  6. Heydari, M., & Roshani, S. (2017). Miniaturised unequal Wilkinson power divider using lumped component elements. Electronics Letters, 53(16), 1117–1119.

    Article  Google Scholar 

  7. Liang, J. G., & Xu, H. X. (2012). Harmonic suppressed bandpass filter using composite right/left handed transmission line. Journal of Zhejiang University Science C, 13(7), 552–558.

    Article  MathSciNet  Google Scholar 

  8. Roshani, S., Golestanifar, A., Ghaderi, A., Siahkamari, H., & Abbott, D. (2018). High performance microstrip low pass filter for wireless communications. Wireless Personal Communications, 99(1), 497–507.

    Article  Google Scholar 

  9. Woo, D. J., & Lee, T. K. (2005). Suppression of harmonics in Wilkinson power divider using dual-band rejection by asymmetric DGS. IEEE Transactions on Microwave Theory and Techniques, 53(6), 2139–2144.

    Article  Google Scholar 

  10. Lin, C. M., Su, H. H., Chiu, J. C., & Wang, Y. H. (2007). Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 17(10), 700–702.

    Article  Google Scholar 

  11. Wang, X., Sakagami, I., Mase, A., & Ichimura, M. (2014). Trantanella Wilkinson power divider with additional transmission lines for simple layout. IET Microwaves, Antennas & Propagation, 8(9), 666–672.

    Article  Google Scholar 

  12. Huang, W., Liu, C., Yan, L., & Huang, K. (2010). A miniaturized dual-band power divider with harmonic suppression for GSM applications. Journal of Electromagnetic Waves and Applications, 24(1), 81–91.

    Article  Google Scholar 

  13. Wang, X., Sakagami, I., Mase, A., & Ichimura, M. (2014). Wilkinson power divider with complex isolation component and its miniaturization. IEEE Transactions on Microwave Theory and Techniques, 62(3), 422–430.

    Article  Google Scholar 

  14. Kim, I. S., Lee, C. H., Lee, D., & Ahn, D. (2016). A smaller step impedance line Wilkinson power divider with an improved better stop-band. Microwave and Optical Technology Letters, 58(7), 1607–1610.

    Article  Google Scholar 

  15. Cheng, K. K. M., & Ip, W. C. (2010). A novel power divider design with enhanced spurious suppression and simple structure. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3903–3908.

    Google Scholar 

  16. Ahmed, U. T., & Abbosh, A. M. (2015). Modified Wilkinson power divider using coupled microstrip lines and shunt open-ended stubs. Electronics Letters, 51(11), 838–839.

    Article  Google Scholar 

  17. Wang, X., Ma, Z., Yoshikawa, M., Kohagura, J., Tokuzawa, T., Kuwahara, D., & Mase, A. (2017). Mixed π type structure in Wilkinson power divider design with 3rd harmonic suppression. Microwave and Optical Technology Letters, 59(6), 1245–1248.

    Article  Google Scholar 

  18. Tang, C. W., & Chen, J. T. (2016). A design of 3-dB wideband microstrip power divider with an ultra-wide isolated frequency band. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1806–1811.

    Article  Google Scholar 

  19. Jamshidi, M., Lalbakhsh, A., Lotfi, S., Siahkamari, H., Mohamadzade, B., & Jalilian, J. (2020). A neuro-based approach to designing a Wilkinson power divider. International Journal of RF and Microwave Computer‐Aided Engineering, 30(3), e22091.

    Article  Google Scholar 

  20. Jamshidi, M., et al. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access: Practical Innovations, Open Solutions, 12, 109581–109595.

    Article  Google Scholar 

  21. Zirak, A. R., & Roshani, S. (2016). Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks. International Journal of Advanced Computer Science and Applications, 7(6), 227–231.

    Google Scholar 

  22. Roshani, S., & Roshani, S. (2017). Two-section impedance transformer design and modeling for power amplifier applications. Applied Computational Electromagnetics Society Journal (ACES), 32(11).

  23. Roshani, G. H., Roshani, S., Nazemi, E., & Roshani, S. (2018). Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement, 129, 296–301.

    Article  Google Scholar 

  24. Hayati, M., Shama, F., Roshani, S., & Abdipour, A. (2014). Linearization design method in class-F power amplifier using artificial neural network. Journal of Computational Electronics, 13(4), 943–949.

    Article  Google Scholar 

  25. Jamshidi, M. B., Alibeigi, N., Lalbakhsh, A., & Roshani, S. An ANFIS Approach to Modeling a Small Satellite Power Source of NASA. In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC) 2019 May 9 (pp. 459–464). IEEE.

  26. Jamshidi, M. B., Lalbakhsh, A., Mohamadzade, B., Siahkamari, H., & Mousavi, S. M. (2019). A novel neural-based approach for design of microstrip filters. AEU-International Journal of Electronics and Communications., 110, 152847.

    Article  Google Scholar 

  27. Jamshidi, M. B., Jamshidi, M., & Rostami, S. An intelligent approach for nonlinear system identification of a li-ion battery. In 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS) 2017 Oct 21 (pp. 98–103). IEEE.

  28. Zhang, F., & Li, C. F. (2008). Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection. Electronics Letters, 44(6), 422–424.

    Article  Google Scholar 

  29. Yang, J., Gu, C., & Wu, W. (2008). Design of novel compact coupled microstrip power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 18(9), 572–574.

    Article  Google Scholar 

  30. Li, J. L., Qu, S. W., & Xue, Q. (2007). Capacitively loaded Wilkinson power divider with size reduction and harmonic suppression. Microwave and Optical Technology Letters, 49(11), 2737–2739.

    Article  Google Scholar 

  31. Gu, J. Z., Yu, X. J., & Sun, X. W. (2006). A compact harmonic-suppressed Wilkinson power divider using C‐SCMRC resonators. Microwave and Optical Technology Letters, 48(12), 2382–2384.

    Article  Google Scholar 

  32. Al Shamaileh, K., Qaroot, A., Dib, N., & Sheta, A. (2011). Design of miniaturized unequal split wilkinson power divider with harmonics suppression using non-uniform transmission lines. Applied Computational Electromagnetics Society Journal (ACES), 26(6).

Download references

Acknowledgements

This research has been supported by the Ministry of Education, Youth and Sports of the Czech Republic under the Project OP VVV Electrical Engineering Technologies with High-Level of Embedded Intelligence CZ.02.1.01/0.0/0.0/18_069/0009855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhan Roshani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshani, S., Jamshidi, M.B., Mohebi, F. et al. Design and Modeling of a Compact Power Divider with Squared Resonators Using Artificial Intelligence. Wireless Pers Commun 117, 2085–2096 (2021). https://doi.org/10.1007/s11277-020-07960-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07960-5

Keywords

Navigation