Skip to main content
Log in

Time Domain Channel Estimation for Time and Frequency Selective Millimeter Wave MIMO Hybrid Architectures: Sparse Bayesian Learning-Based Kalman Filter

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a Sparse Bayesian Learning (SBL) based channel estimation technique for frequency selective millimeter wave (mmWave) channel in the time domain approach is developed. Further, SBL based Kalman filter (SBL-KF) for time and frequency selective mmWave multiple-input multiple-output (MIMO) hybrid architecture is presented. Hybrid precoders and combiners are designed to estimate the channel of mmWave MIMO systems. The hybrid precoding technique provides low power consumption and high achievable rate performance at mmWave frequencies. mmWave channels are sparse in nature, and the sparse recovery problem is estimated using the channel estimation technique. A simulation result of SBL-KF is improved by 4 dB and 10 dB of SNR compared to the conventional SBL and Orthogonal Matching Pursuit based scheme, respectively. The proposed SBL-KF scheme provides low estimation error at smaller training overheads M = 50 compared to the other existing work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rappaport, T. S., Heath, R. W., Jr., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. London: Pearson Education.

    Google Scholar 

  2. Yong, S. K., & Chong, C.-C. (2006). An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007(1), 078907.

    Article  Google Scholar 

  3. Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimetre wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.

    Article  Google Scholar 

  4. Giannetti, F., Luise, M., & Reggiannini, R. (1999). Mobile and personal communications in the 60 GHz band: A survey. Wireless Personal Communications, 10(2), 207–243.

    Article  Google Scholar 

  5. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  6. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Article  Google Scholar 

  7. MacCartney, G. R., et al. (2016). Millimeter wave wireless communications: New results for rural connectivity. London: Pearson Education.

    Book  Google Scholar 

  8. Han, D. G., Kim, Y. J., & Cho, Y. S. (2016). Efficient preamble design technique for millimeter-wave cellular systems with beamforming. Sensors (Switzerland), 16(7), 1129.

    Article  Google Scholar 

  9. Alkhateeb, A., Mo, J., González-Prelcic, N., & Heath, R. W., Jr. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

    Article  Google Scholar 

  10. Perahia, E., Cordeiro, C., Park, M. & Yang, L. L. (2010). IEEE 802.11ad: Defining the next generation multi-Gbps Wi-Fi. In Proceedings IEEE consumer communications and networking conference (CCNC), pp. 1–5.

  11. Wang, J., et al. (2009). Beam codebook based beamforming protocol for multi- Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1390–1399.

    Article  Google Scholar 

  12. Chen, L., Yang, Y., Chen, X. & Wang, W. (2011) Multi-stage beamforming codebook for 60 GHz WPAN. In Proceedings 6th international ICST conference on communications and networking (CHINACOM), pp. 361–365.

  13. Hur, S., Kim, T., Love, D. J., Krogmeier, J. V., Thomas, T. A., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Transactions on Communications, 61(10), 4391–4403.

    Article  Google Scholar 

  14. Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  15. Malloy, M. L. & Nowak, R. D. (2012). Near-optimal adaptive compressed sensing. In Proceedings of Asilomar Conference on Signals, Systems, and Computers (ASILOMAR), Pacific Grove, CA, pp. 1935–1939.

  16. Malloy, M. L. & Nowak, R. D (2012). Near-optimal compressive binary search. arXiv preprint arXiv:1306.6239.

  17. Iwen, M., & Tewfik, A. (2012). Adaptive strategies for target detection and localization in noisy environments. IEEE Transactions on Signal Processing, 60(5), 2344–2353.

    Article  MathSciNet  Google Scholar 

  18. Ramasamy, D., Venkateswaran, S. & Madhow, U. (2012) Compressive adaptation of large steerable arrays. In Information theory and applications workshop (ITA), pp. 234–239.

  19. Ramasamy, D., Venkateswaran, S. & Madhow, U. (2012). Compressive tracking with 1000-element arrays: A framework for multi-Gbps mm wave cellular downlinks. In Proceedings of annual Allerton conference on communication, control, and computing, pp. 690–697.

  20. Berraki, D. E., Armour, S. M. D. & Nix, A. R. (2014) Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems. In Proceedings of IEEE wireless communications and networking conference (WCNC), pp. 887–892.

  21. Lee, J., Gye-Tae, G., & Lee, Y. H. (2014) Exploiting spatial sparsity for estimating channels of hybrid MIMO systems in millimetre wave communications. In Proceedings of IEEE Globecom.

  22. M´endez-Rial, R., Rusu, C., Gonz´alez-Prelcic, N., Alkhateeb, A., & Heath, R. W., Jr. (2016). Hybrid MIMO architectures for millimetre wave communications: Phase shifters or switches? IEEE Access, 4, 247–267.

    Article  Google Scholar 

  23. Alkhateeb, A., & Heath, R. W., Jr. (2016). Frequency selective hybrid precoding for limited feedback millimeter wave systems. IEEE Transactions on Communications, 64(5), 1801–1818.

    Article  Google Scholar 

  24. Venugopal, K., Alkhateeb, A., Gonz´alez-Prelcic, N., & Heath, R. W. (2016). Time-domain channel estimation for wideband millimetre wave systems with hybrid architecture. In Submitted to international conference on acoustics, speech and signal processing (ICASSP), pp. 1–5.

  25. IEEE. (2012). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Std 802.11ad- 2012.

  26. Lee, J., Gil, G.-T., & Lee, Y. H. (2016). Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Transactions on Communications, 64(6), 2370–2386.

    Article  Google Scholar 

  27. Wipf, D. P., & Rao, B. D. (2004). Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52(8), 2153–2164.

    Article  MathSciNet  Google Scholar 

  28. Venugopal, K., Alkhateeb, A., Prelcic, N. G., & Heath, R. W. (2017). Channel estimation for hybrid architecture-based wideband millimeter wave systems. IEEE Journal on Selected Areas in Communications, 35(9), 1996–2009.

    Article  Google Scholar 

  29. Srivastava, Suraj, Mishra, Amrita, Rajoriya, Anupama, Jagannatham, Aditya K., & Ascheid, Gerd. (2018). Quasi-static and time-selective channel estimation for block-sparse millimeter wave hybrid MIMO systems: Sparse Bayesian Learning (SBL)-based approaches. IEEE Transactions on Signal Processing, 67(5), 1251–1266.

    Article  MathSciNet  Google Scholar 

  30. He, J., Kim, T., Ghauch, H., Liu, K. & Wang, G. (2014). Millimeter wave MIMO channel tracking systems. In 2014 IEEE Globecom workshops, pp. 416–421.

  31. Karseras, E., Leung, K., & Dai, W. (2013). Tracking dynamic sparse signals using Hierarchical Bayesian Kalman filters. In ICASSP, IEEE international conference on acoustics, speech and signal processing—proceedings, pp. 6546–6550.

  32. Prasad, R., Murthy, C. R., & Rao, B. D. (2014). Joint approximately sparse channel estimation and data detection in OFDM systems using Sparse Bayesian Learning. IEEE Transactions on Signal Processing, 62(14), 3591–3603.

    Article  MathSciNet  Google Scholar 

  33. Srivastava, S., Kumar Patro, C. S., Jagannatham, A. K., & Sharma, G. (2019). Sparse Bayesian Learning (SBL)-based frequency-selective channel estimation for millimeter wave hybrid MIMO systems. In 25th national conference on communications, NCC 2019.

  34. Srivastava, S. & Jagannatham, A. K. (2019). Sparse Bayesian Learning-Based Kalman Filtering (SBL-KF) for Group-Sparse Channel Estimation in Doubly Selective mmWave Hybrid MIMO Systems. In IEEE workshop on signal processing advances in wireless communications, SPAWC, Vol. 2019-July.

  35. Liu, S., Tang, L., Bai, Y., & Zhang, X. (2020). A Sparse Bayesian Learning-Based DOA estimation method with the Kalman Filter in MIMO Radar. Electronics, 9(2), 447.

    Google Scholar 

  36. Chen, Y., Zhang, J. & Jayalath, A. D. S. (2008). New training sequence structure for zero-padded SC-FDE system in presence of carrier frequency offset. In Proceedings of IEEE vehicular technology conference (VTC), pp. 1–4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shoukath Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukath Ali, K., Sampath, P. Time Domain Channel Estimation for Time and Frequency Selective Millimeter Wave MIMO Hybrid Architectures: Sparse Bayesian Learning-Based Kalman Filter. Wireless Pers Commun 117, 2453–2473 (2021). https://doi.org/10.1007/s11277-020-07986-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07986-9

Keywords

Navigation