Skip to main content
Log in

A Simple Shape Descriptor Merging Arithmetical Wrap Around Technique with Absolute Localized Pixel Differences

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The quest for computationally simple, highly accurate and precise shape descriptors supporting retrieval continues to be an active research area in computer vision. In this paper, a simple feature descriptor is realized by blending Modulo Arithmetic (MA) with Local Absolute Pixel Differences (LAPD) labelled as MA-LAPD. MA initially refines edges of images through modulo normalization and later operated by LAPD to capture local texture patterns. Subsequently, LAPD encodes the local intensity transitions in eight directions with regard to center pixel. The two prominent directional indices are converted into unique decimal codes that represent each pixel position, thus, transforming each image into a collection of LAPD codes. The ensuing LAPD image is then fabricated into histograms for characterizing the distribution of local features, used for matching and retrieval. Quantitative and qualitative investigations on Kimia’s 99, MPEG-7 Part-B and Tari-1000 datasets reveal consistent Bull’s Eye Retrieval (BER) scores above 91%. Also, relative analysis exposes the superiority of MA-LAPD with its predecessors in majority of the datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu, D., Huang, W., Yang, J., Shang, L., & Zhu, Z. (2015). Shape matching and object recognition using common base triangle area. IET Computer Vision, 9(5), 769–778. https://doi.org/10.1049/iet-cvi.2014.0409.

    Article  Google Scholar 

  2. Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. https://doi.org/10.1016/j.patcog.2003.07.008.

    Article  Google Scholar 

  3. Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4), 509–522. https://doi.org/10.1109/34.993558.

    Article  Google Scholar 

  4. Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 286–299. https://doi.org/10.1109/TPAMI.2007.41.

    Article  Google Scholar 

  5. Alajlan, N., El Rube, I., Kamel, M. S., & Freeman, G. (2007). Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognition, 40(7), 1911–1920. https://doi.org/10.1016/j.patcog.2006.12.005.

    Article  MATH  Google Scholar 

  6. Alajlan, N., Kamel, M. S., & Freeman, G. H. (2008). Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6), 1003–1013. https://doi.org/10.1109/TPAMI.2008.37.

    Article  Google Scholar 

  7. De Souza, G. B., & Marana, A. N. (2013). HTS: A new shape descriptor based on Hough Transform. In ProceedingsIEEE international symposium on circuits and systems (pp. 974–977). https://doi.org/10.1109/ISCAS.2013.6572011.

  8. Srestasathiern, P., & Yilmaz, A. (2011). Planar shape representation and matching under projective transformation. Computer Vision and Image Understanding, 115(11), 1525–1535. https://doi.org/10.1016/j.cviu.2011.07.004.

    Article  Google Scholar 

  9. Wu, H., & Yan, S. (2016). Computing invariants of Tchebichef moments for shape based image retrieval. Neurocomputing, 215, 110–117. https://doi.org/10.1016/j.neucom.2015.05.147.

    Article  Google Scholar 

  10. Bai, X., Rao, C., & Wang, X. (2014). Shape vocabulary: A robust and efficient shape representation for shape matching. IEEE Transactions on Image Processing, 23(9), 3935–3949. https://doi.org/10.1109/TIP.2014.2336542.

    Article  MathSciNet  MATH  Google Scholar 

  11. Matsuda, Y., Ogawa, M., & Yano, M. (2015). Shape retrieval with geometrically characterized contour partitions. IEEE Access, 3, 1161–1178. https://doi.org/10.1109/ACCESS.2015.2451627.

    Article  Google Scholar 

  12. Kaothanthong, N., Chun, J., & Tokuyama, T. (2016). Distance interior ratio: A new shape signature for 2D shape retrieval. Pattern Recognition Letters, 78, 14–21. https://doi.org/10.1016/j.patrec.2016.03.029.

    Article  Google Scholar 

  13. Mukhopadhyay, A., Mukherjee, I., & Biswas, P. (2019). Comparing shape descriptor methods for different color space and lighting conditions. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 33(4), 389–398. https://doi.org/10.1017/S0890060419000398.

    Article  Google Scholar 

  14. Mostafa, Y. (2020). A new shape descriptor for road network separation from parking lots and intersection detection on VHR remote sensing images. International Journal of Remote Sensing, 41(11), 4226–4237. https://doi.org/10.1080/01431161.2020.1714780.

    Article  Google Scholar 

  15. Elmezain, M., & Ibrahem, H. M. (2020). OUP accepted manuscript. The Computer Journal. https://doi.org/10.1093/comjnl/bxaa118.

    Article  Google Scholar 

  16. Bai, X., Yang, X., Latecki, L. J., Liu, W., & Tu, Z. (2010). Learning context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 861–874. https://doi.org/10.1109/TPAMI.2009.85.

    Article  Google Scholar 

  17. Abualigah, L. M., & Khader, A. T. (2017). Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. Journal of Supercomputing, 73(11), 4773–4795. https://doi.org/10.1007/s11227-017-2046-2.

    Article  Google Scholar 

  18. Abualigah, L. M. Q. (2019). Feature selection and enhanced krill herd algorithm for text document clustering. Studies in Computational Intelligence, 816, 1–186. https://doi.org/10.1007/978-3-030-10674-4.

    Article  Google Scholar 

  19. Abualigah, L. (2020). Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-04839-1.

    Article  Google Scholar 

  20. Yang, J., Wang, H., Yuan, J., Li, Y., & Liu, J. (2016). Invariant multi-scale descriptor for shape representation, matching and retrieval. Computer Vision and Image Understanding, 145, 43–58. https://doi.org/10.1016/j.cviu.2016.01.005.

    Article  Google Scholar 

  21. Ling, H., Yang, X., & Latecki, L. J. (2010). Balancing deformability and discriminability for shape matching. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 6313 LNCS, pp. 411–424). Springer. https://doi.org/10.1007/978-3-642-15558-1_30.

  22. Shu, X., & Wu, X. J. (2011). A novel contour descriptor for 2D shape matching and its application to image retrieval. Image and Vision Computing, 29(4), 286–294. https://doi.org/10.1016/j.imavis.2010.11.001.

    Article  Google Scholar 

  23. Priyanka, S., & Sudhakar, M. S. (2018). Tetrakis square tiling-based triangulated feature descriptor aiding shape retrieval. Digital Signal Processing: A Review Journal, 79, 125–135. https://doi.org/10.1016/j.dsp.2018.04.012.

    Article  MathSciNet  Google Scholar 

  24. Ion, A., Artner, N. M., Peyré, G., Kropatsch, W. G., & Cohen, L. D. (2011). Matching 2D and 3D articulated shapes using the eccentricity transform. Computer Vision and Image Understanding, 115(6), 817–834. https://doi.org/10.1016/j.cviu.2011.02.006.

    Article  Google Scholar 

  25. Jomma, H. D., & Hussein, A. I. (2016). Circle views signature: A novel shape representation for shape recognition and retrieval. Canadian Journal of Electrical and Computer Engineering, 39(4), 274–282. https://doi.org/10.1109/CJECE.2016.2574745.

    Article  Google Scholar 

  26. Felzenszwalb, P. F., & Schwartz, J. D. (2007). Hierarchical matching of deformable shapes. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2007.383018.

  27. Wang, J., Bai, X., You, X., Liu, W., & Latecki, L. (2012). Shape matching and classification using height functions. Pattern Recognition Letters, 33, 134–143.

    Article  Google Scholar 

  28. Govindaraj, P., & Sudhakar, M. S. (2018). Shape characterization using laws of texture energy measures facilitating retrieval. The Imaging Science Journal, 66(2), 98–105. https://doi.org/10.1080/13682199.2017.1380356.

    Article  Google Scholar 

  29. Govindaraj, P., & Sudhakar, M. S. (2018). Hexagonal grid based triangulated feature descriptor for shape retrieval. Pattern Recognition Letters, 116, 157–163. https://doi.org/10.1016/j.patrec.2018.10.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kethepalli Mallikarjuna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallikarjuna, K., Raheem, B.A., Pathanadka, G. et al. A Simple Shape Descriptor Merging Arithmetical Wrap Around Technique with Absolute Localized Pixel Differences. Wireless Pers Commun 117, 2495–2511 (2021). https://doi.org/10.1007/s11277-020-07991-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07991-y

Keywords

Navigation