Skip to main content
Log in

An Efficient Low Computational Cost Method of R-Peak Detection

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Visual inspection of R-peaks in an electrocardiogram (ECG) signal may lead to wrong diagnosis due to physiological variability and the noisy status of the QRS complexes causing its incorrect interpretation. Hence, computer-aided diagnosis (CAD) is required for better and correct diagnosis of cardiovascular diseases and interpretation of essential clinical information. Low computational cost CAD systems with good accuracy are always preferred in health informatics. Presently, performance of most of the ECG signal analysis techniques such as feature extraction, classification etc. depends heavily on the used pre-processing technique, which may consume appreciable portion of the total processing time. Therefore, it can be inferred that if pre-processing technique is skipped altogether without compromising the detection accuracy of a diagnosis, then it would save central processing unit (CPU) time reducing the overall computational time. This time saving will turn out to be very important in critical and emergency situations to save lives of several patients. Hence, the authors were motivated to propose an efficient low computational cost method based on fractional Fourier transform (FrFT) as a feature extraction technique eliminating the need of any pre-processing. In other words, the proposed technique is applied directly on the raw ECG data resulting in computational savings. Firstly, eigenvalues and eigenfunctions are proposed to be obtained using FrFT. And secondly, these are proposed to be utilized for R-peak detection using Independent Principal Component Analysis (IPCA) on the basis of kurtosis and variance of the extracted features in a noisy ECG signal with different morphologies. The proposed methodology is evaluated on the basis of various performance parameters viz. sensitivity (SE), accuracy (ACC), and positive predictive value (PPV) (of the detected ECG beats). SE of 99.97%, PPV of 99.98%, and ACC of 99.94% are obtained on MIT-BIH Arrhythmia (MIT-BIH Arr) database. All simulations are done using Intel Core i3-3240 Dual-Core Processor 3.4 GHz and 8 GB of RAM using MATLAB R2011a. The average processing time of CPU is observed to be 0.677 s with detection error rate (DER) of 0.058%. Both these values are least among other existing techniques, which establish that the proposed method incurs low computational cost. Also, consistently high values of all the performance parameters such as SE, PPV and ACC demonstrates the robustness of the proposed technique. Hence, the proposed methodology is expected to assist cardiologists for intelligent, effective, and timely diagnosis of heart rhythm irregularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marsanova, L., Ronzhina, M., Smíšek, R., Vítek, M., Němcová, A., Smital, L., et al. (2017). ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-10942-6.

    Article  Google Scholar 

  2. Bouaziz, F., Boutana, D., & Benidir, M. (2014). Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Procesiing, 8(7), 774–782. https://doi.org/10.1049/iet-spr.2013.0391.

    Article  Google Scholar 

  3. Zidelmal, Z., Amiroua, A., Ould-Abdeslamb, D., Moukademb, A., & Dieterlen, A. (2014). QRS detection using S-Transform and Shannon energy. Computers Methods and Programs in Biomedicine, 116(1), 1–9. https://doi.org/10.1016/j.cmpb.2014.04.008.

    Article  Google Scholar 

  4. Sahoo, S., Biswal, P., Das, T., & Sabut, S. (2016). De-noising of ECG Signal and QRS Detection using Hilbert Transform and Adaptive Thresholding. Procedia Technology, 25, 68–75. https://doi.org/10.1016/j.protcy.2016.08.082.

    Article  Google Scholar 

  5. Vimala, K. (2014). Stress causing Arrhythmia Detection from ECG Signal using HMM. International Journal of Innovative Research in Computer and Communication Engineering, 2(10), 6079–6085.

    Google Scholar 

  6. Chan, H. L., Chou, W. S., Chen, S., Fang, S. C., Liou, C. S., & Hwang, Y. S. (2005). Continuous and online analysis of heart rate variability. Journal of Medical Engineering & Technology, 29(5), 227–234. https://doi.org/10.1080/03091900512331332587.

    Article  Google Scholar 

  7. Rabbani, H., Mahjoob, M. P., Farahabadi, E., & Farahabadi, A. (2011). R Peak detection in electrocardiogram signal based on an optimal combination of wavelet transform, hilbert transform, and adaptive thresholding. Journal of Medical Signals and Sensors, 1(2), 91–98.

    Article  Google Scholar 

  8. Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39(14), 11792–11800.

    Article  Google Scholar 

  9. Chandra, S., Sharma, A., & Singh, G. K. (2018). Feature extraction of ECG signal. Journal of Medical Engineering & Technology, 42(4), 306–316. https://doi.org/10.1080/03091902.2018.1492039.

    Article  Google Scholar 

  10. Cromwell, L., Weibell, F. J., & Pfeiffer, E. A. (1980). Biomedical instrumentation and measurements (2nd ed.). Englewood Cliffs (NJ): Prentice Hall.

    Google Scholar 

  11. Sharma, A., Patidar, S., Upadhyaya, A., & Acharya, U. R. (2019). Accurate tunable-Q wavelet transform based method for QRS complex detection. Computer & Electrical Engineering, 75, 101–111. https://doi.org/10.1016/j.compeleceng.2019.01.025.

    Article  Google Scholar 

  12. Phukpattaranont, P. (2015). QRS detection algorithm based on the quadratic filter. Expert Systems with Applications, 42(11), 4867–4877. https://doi.org/10.1016/j.eswa.2015.02.012.

    Article  Google Scholar 

  13. Kaur, A., Agarwal, A., Agarwal, R., & Kumar, S. (2018). A Novel Approach to ECG R-Peak Detection. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-018-3557-8.

    Article  Google Scholar 

  14. Leong, C. I., Mak, P. I., Lam, C. P., Dong, C., Vai, M. I., Mak, P. U., et al. (2012). A 0.83 μW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35 m CMOS. IEEE Transactions on Biomedical Circuits and Systems, 6(6), 586–595. https://doi.org/10.1109/TBCAS.2012.2188798.

    Article  Google Scholar 

  15. Yochum, M., Renaud, C., & Jacquir, S. (2016). Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomedical Signal Processing and Control, 25, 46–52. https://doi.org/10.1016/j.bspc.2015.10.011.

    Article  Google Scholar 

  16. Li, H., Wang, X., Chen, L., & Li, E. (2014). Denoising and R-Peak Detection of Electrocardiogram Signal Based on EMD and Improved Approximate Envelope. Circuits, Systems, and Signal Processing, 33(4), 1261–1276. https://doi.org/10.1007/s00034-013-9691-3.

    Article  Google Scholar 

  17. Acharya, U. R., Sankaranarayanan, M., Nayak, J., Xiang, C., & Tamura, T. (2008). Automatic identification of cardiac health using modeling techniques: A comparative study. Information Sciences, 178(23), 4571–4582. https://doi.org/10.1016/j.ins.2008.08.006.

    Article  Google Scholar 

  18. Bahoura, M., Hassani, M., & Hubin, M. (1997). DSP implementation of wavelet transform for real time ECG waveforms detection and heart rate analysis. Computers Methods and Programs in Biomedicine, 52(1), 35–44. https://doi.org/10.1016/s0169-2607(97)01780-x.

    Article  Google Scholar 

  19. Nygåards, M. E., & Sörnmo, L. (1983). Delineation of the QRS complex using the envelope of the ECG. Medical & Biological Engineering & Computing, 21(5), 538–547. https://doi.org/10.1007/BF02442378.

    Article  Google Scholar 

  20. Trahanias, P. E. (1993). An approach to QRS complex detection using mathematical morphology. IEEE Transactions on Biomedical Engineering, 40(2), 201–205. https://doi.org/10.1109/10.212060.

    Article  Google Scholar 

  21. Plesnik, E., Malgina, O., Tasic, J. F., & Zajc, M. (2012). Detection of the electrocardiogram fiducial points in the phase space using the Euclidian distance measure. Medical Engineering & Physics, 34(4), 524–529. https://doi.org/10.1016/j.medengphy.2012.01.005.

    Article  Google Scholar 

  22. Ning, X., & Selesnick, I. W. (2013). ECG enhancement and QRS detection based on sparse derivatives. Biomedical Signal Processing and Control, 8(6), 713–723. https://doi.org/10.1016/j.bspc.2013.06.005.

    Article  Google Scholar 

  23. Verma, A. K., Saini, I., & Saini, B. S. (2018). Alexander fractional differential window filter for ECG denoising. Australasian Physical and Engineering Sciences in Medicine, 41(2), 519–539. https://doi.org/10.1007/s13246-018-0642-y.

    Article  Google Scholar 

  24. Das, M., & Ari, S. (2013). Analysis of ECG signal denoising method based on S-transform. Innovation and Research in Biomedical Engineering (IRBM), 34(6), 362–370. https://doi.org/10.1016/j.irbm.2013.07.012.

    Article  Google Scholar 

  25. Meireles, A.J.M.D. (2011). ECG Denoising based on Adaptive Signal Processing Technique. M.Tech dissertation, Porto, Portugal.

  26. Mehta, S. S., & Lingayat, N. S. (2008). SVM-based algorithm for recognition of QRS complexes in electrocardiogram. Innovation and Research in Biomedical Engineering (IRBM), 29(5), 310–317. https://doi.org/10.1016/j.rbmret.2008.03.006.

    Article  Google Scholar 

  27. Altan, G., Kutlu, Y., & Yeniad, M. (2019). ECG Based Human Identification Using Second Order Difference Plots. Computers Methods and Programs in Biomedicine, 170, 81–93. https://doi.org/10.1016/j.cmpb.2019.01.010.

    Article  Google Scholar 

  28. Zhang, C., Li, X., & Zhang, M. (2010). A novel ECG signal denoising method based on Hilbert-Huang Transform. In IEEE conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE), China (pp. 284-287). https://doi.org/10.1109/CCTAE.2010.5544365.

  29. Nayak, C., Saha, S. K., Kar, R., & Mandal, D. (2018). An efficient QRS complex detection using optimally designed digital differentiator. Circuits, Systems, and Signal Processing, 38(5), 716–749. https://doi.org/10.1007/s00034-018-0880-y.

    Article  Google Scholar 

  30. Dinh, A. N., Kumar, D. K., Pah, N. D., & Burton, P. (2002). Wavelet for QRS detection. Proceedings of the IEEE, 2, 1883–1887. https://doi.org/10.1109/IEMBS.2001.1020593.

    Article  Google Scholar 

  31. Chen, S. W., Chen, C. H., & Chan, H. L. (2006). A real-time QRS method based on moving-averaging incorporating with wavelet denoising. Computers Methods and Programs in Biomedicine, 82(3), 187–195. https://doi.org/10.1016/j.cmpb.2005.11.012.

    Article  Google Scholar 

  32. Dokur, Z., & Ölmez, T. (2001). ECG beat classification by a novel hybrid neural network. Computers Methods and Programs in Biomedicine, 66(3), 167–181. https://doi.org/10.1016/S0169-2607(00)00133-4.

    Article  Google Scholar 

  33. Alyasseri, Z. A. A., Khader, A. T., Betar, M. A. A., & Awadallah, M. A. (2018). Hybridizing β-hill climbing with wavelet transform for denoising ECG signals. Information Sciences, 429, 229–246. https://doi.org/10.1016/J.INS.2017.11.026.

    Article  MathSciNet  Google Scholar 

  34. Sunkaria, R. K., Saxena, S. C., Kumar, V., & Singhal, A. M. (2010). Wavelet based R-peak detection for heart rate variability studies. Medical Engineering & Technology, 34(2), 108–115. https://doi.org/10.3109/03091900903281215.

    Article  Google Scholar 

  35. Chawla, M. P. S. (2008). Segment Classification of ECG data and Construction of Scatter Plots Using Principal Component Analysis. Journal of Mechanics in Medicine and Biology, 8(3), 421–458. https://doi.org/10.1142/S0219519408002681.

    Article  Google Scholar 

  36. Rodrígueza, R., Mexicanob, A., Bilac, J., Cervantesd, S., & Ponce, R. (2015). Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. Journal of Applied Research and Technology, 13(2), 261–269. https://doi.org/10.1016/j.jart.2015.06.008.

    Article  Google Scholar 

  37. Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computers Methods and Programs in Biomedicine, 107(3), 490–496. https://doi.org/10.1016/j.cmpb.2011.12.004.

    Article  Google Scholar 

  38. Lin, Q., Ran, T., Siyong, Z., & Yue, W. (2004). Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Science in China Series F: Information Sciences, 47(2), 184–198. https://doi.org/10.1360/02yf0456.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ozaktas, H. M., Zalevsky, Z., & Kutay, M. A. (2001). The fractional fourier transform with applications in optics and signal processing (1st ed.). New York: Wiley.

    Google Scholar 

  40. Daamouche, A., Hamami, L., Alajlan, N., & Melgani, F. (2012). A wavelet optimization approach for ECG signal classification. Biomedical Signal Processingand Control, 7(4), 342–349. https://doi.org/10.1016/j.bspc.2011.07.001.

    Article  Google Scholar 

  41. Lin, P. Y. (1999). The fractional fourier transform and its applications. Taipei: National Taiwan University.

    Google Scholar 

  42. Zayed, A. I. (1996). On the relationship between the Fourier and Fractional Fourier Transforms. IEEE Signal Processing Letters, 3(12), 310–311. https://doi.org/10.1109/97.544785.

    Article  Google Scholar 

  43. Mix-Omics (2020). Omics Data Integration Project-Independent Principal Component Analysis. Resource Document. http://mixomics.org/methods/ipca/.

  44. Yao, F., Coquery, J., & Cao, K. A. L. (2012). Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 13(24), 1–15. https://doi.org/10.1186/1471-2105-13-24.

    Article  Google Scholar 

  45. Boluwade, A., & Madramootoo, C. A. (2016). Independent principal component analysis for simulation of soil water content and bulk density in a Canadian Watershed. International Soil and Water Conservation Research, 4(3), 151–158. https://doi.org/10.1016/j.iswcr.2016.09.001.

    Article  Google Scholar 

  46. Kaur, H., & Rajni, R. (2017). On the detection of Cardiac Arrhythmia with Principal Component Analysis. Wireless Personal Communications, 97, 5495–5509. https://doi.org/10.1007/s11277-017-4791-1.

    Article  Google Scholar 

  47. Chawla, M. P. S., Verma, H. K., & Kumar, V. (2008). A new statistical PCA–ICA algorithm for location of R-peaks in ECG. International Journal of Cardiology, 129(1), 146–148.

    Article  Google Scholar 

  48. Zhang, K., Tian, G., &Tian, L. (2015). Blind source separation based on JADE algorithm and application. In Proceedings of 3rd International Conference on Mechatronics, Robotics and Automation, Atlantis Press, (Vol. 15, pp. 252-255). https://doi.org/10.2991/icmra-15.2015.50.

  49. Gupta, V., & Mittal, M. (2019). A Comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. Innovation and Research in Biomedical Engineering (IRBM), 40(3), 145–156. https://doi.org/10.1016/j.irbm.2019.04.003.

    Article  Google Scholar 

  50. Shia, H., Wanga, H., Zhanga, F., Huanga, Y., Zhaob, L., & Liu, C. (2019). Inter-patient heartbeat classification based on region feature extraction and ensemble classifier. Biomedical Signal Processing and Control, 51, 97–105. https://doi.org/10.1016/j.bspc.2019.02.012.

    Article  Google Scholar 

  51. Thakor, N. V., & Zhu, Y. S. (1991). Applications of Adaptive Filtering to ECG Analysis: Noise Cancellation and Arrhythmia Detection. IEEE TransactionsonBiomedical Engineering, 38(8), 785–794. https://doi.org/10.1109/10.83591.

    Article  Google Scholar 

  52. Gu, X., Hu, J., Zhang, L., Ding, J., & Yan, F. (2020). An improved method with high anti-interference ability for R peak detection in wearable devices. Innovation and Research in Biomedical Engineering (IRBM), 41(3), 172–183. https://doi.org/10.1016/j.irbm.2020.01.002.

    Article  Google Scholar 

  53. Mendlovic, D., & Ozaktas, H. M. (1993). Fractional Fourier transforms and their optical implementation. Journal of the Optical Society of America A, 10(9), 1875–1881. https://doi.org/10.1364/JOSAA.10.001875.

    Article  Google Scholar 

  54. Barhatte, A., Dale, M., & Ghongade, R. (2019). Cardiac events detection using curvelet transform. Sadhana., 44(47), 1–10. https://doi.org/10.1007/s12046-018-1046-0.

    Article  MathSciNet  Google Scholar 

  55. Hussein, E. A. R., Hassooni, A. S., & Al-Libawy, H. (2019). Detection of electrocardiogram QRS complex based on modified adaptive threshold. International Journal of Electrical and Computer Engineering, 9(5), 3512–3521. https://doi.org/10.11591/ijece.v9i5.pp3512-3521.

    Article  Google Scholar 

  56. Kaya, Y., & Pehlivan, H. (2015). Classification of premature ventricular contraction in ECG. International Journal of Advanced Computer Science and Applications (IJACSA), 6(7), 34–40. https://doi.org/10.14569/ijacsa.2015.060706.

    Article  Google Scholar 

  57. Qin, Q., Li, J., Yue, Y., & Liu, C. (2017). An adaptive and time- efficient ECG R-Peak detection algorithm. Journal of Healthcare Engineering, 17, 1–14. https://doi.org/10.1155/2017/5980541.

    Article  Google Scholar 

  58. Rai, H.M., Trivedi, A., Chatterjee, K., & Shukla, S. (2014). R-Peak Detection using Daubechies Wavelet and ECG Signal Classification using Radial Basis Function Neural Network. Journal of The Institution of Engineers (India): Series B, 95: 63–71. https://doi.org/10.1007/s40031-014-0073-4.

  59. Gupta, V., Mittal, M., & Mittal, V. (2020). Detection of R-peaks using Fractional Fourier Transform and Principal Component Analysis. Innovation and Research in Biomedical Engineering (IRBM), in press. https://www.sciencedirect.com/journal/irbm.

  60. Nguyen, T., Qin, X., Dinh, A., & Bui, F. (2019). Low resource complexity R-peak detection based on triangle template matching and moving average filter. Sensors, 19(18), 1–17. https://doi.org/10.3390/s19183997.

    Article  Google Scholar 

  61. Park, J. S., Lee, S. W., & Park, U. (2017). R peak detection method using wavelet transform and modified shannon energy envelope. Journal of Healthcare Engineering, 17, 1–14. https://doi.org/10.1155/2017/4901017.

    Article  Google Scholar 

  62. Biopac Systems. (2020). The Premier Data Acquisition & Analysis Program. Resource Document. https://www.biopac.com/wp-content/uploads/AcqKnowledge-Products.pdf.

  63. Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., & Luo, S. (1999). ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering, 46(2), 192–202. https://doi.org/10.1109/10.740882.

    Article  Google Scholar 

  64. Hamilton, P. (2002). Open source ECG analysis. Computers in Cardiology, 29, 101–104.

    Article  Google Scholar 

  65. Kaya, Y., & Pehlivan, H. (2015). Feature selection using genetic algorithms for premature ventricular contraction classification. In IEEE conference on Electrical and Electronics Engineering, Turkey (pp. 1229-1232). https://doi.org/10.1109/ELECO.2015.7394628.

  66. Kaya, Y., Pehlivan, H., & Tenekeci, M. E. (2017). Effective ECG beat classification using higher order statistic features and genetic feature selection. Biomedical Research, 28(17), 7594–7603.

    Google Scholar 

  67. Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–236. https://doi.org/10.1109/tbme.1985.325532.

    Article  Google Scholar 

  68. Liu, X., Yang, J., Zhu, X., Zhou, S., Wang, H., & Zhang, H. (2014). A novel R-Peak Detection Method Combining Energy and Wavelet Transform in Electrocardiogram Signal. Biomedical Engineering: Applications, Basis and Communications, 26(1), 1–9. https://doi.org/10.4015/S1016237214500070.

    Article  Google Scholar 

  69. Kim, J., Shin, H. S., Shin, K., & Lee, M. (2009). Robust algorithm for arrhythmia classification in ECG using extreme learning machine. BioMedical Engineering OnLine, 8(31), 1–12. https://doi.org/10.1186/1475-925X-8-31.

    Article  Google Scholar 

  70. Aqil, M., Jbari, A., & Bourouhou, A. (2016). Adaptive ECG Wavelet analysis for R-peaks Detection In IEEE conference on Electrical and Information Technologies, Tangiers, Morocco (pp. 1–4). https://doi.org/10.1109/EITech.2016.7519582.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M. & Mittal, V. An Efficient Low Computational Cost Method of R-Peak Detection. Wireless Pers Commun 118, 359–381 (2021). https://doi.org/10.1007/s11277-020-08017-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08017-3

Keywords

Navigation