Skip to main content
Log in

Unconstrained Face Detection of Multiple Humans Present in the Video

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To capture a stable picture through the digital camera is a challenging task in computer vision. The While identifying facial features such as misalignment, a parasitic light effect and a change in object position are the errors found in image processing. These errors get aggregated with images and cumulatively create distortion in the output video, which makes facial feature recognition more complicated in the video. In this paper, a solutions for unconstrained facial detection from digital image processing has been proposed, which fulfilled two requirements; first is a reliable method to extract the facial feature of the humans from a video and second is the estimation of 3D-image of human from the motion video. To meet these requirements, we develop a hybrid estimation method that combines the feature selection and extraction of facial features of the human from the video. Here we have extended the estimation of 2D to 3D unconstrained facial feature recognition. In the results, we found that the object in images is detected and we are able to develop the 3D sketch of human from the video. Further to validate the robustness of the proposed method, we have performed comprehensive testing on the huge dataset. The output of testing shows that the proposed method would be better to identify multiple facial features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110.

    Article  Google Scholar 

  2. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient based learning applied to document recognition. Proceedings of IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  3. Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., & Benosman, R. B. (2017). HOTS: A hierarchy of event-based time-surfaces for pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7), 1346–1359.

    Article  Google Scholar 

  4. Mead, C., & Mahowald, M. (1991). The silicon retina. Science America, 264, 76–82.

    Google Scholar 

  5. Boahen, K. A. (2000). Point-to-point connectivity between neuromorphic chips using address-events. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(5), 416–434.

    Article  Google Scholar 

  6. Kafai, M., An, L., & Bhanu, B. (2014). Reference face graph for face recognition. IEEE Transactions on Information Forensics and Security, 9(12), 2132–2143.

    Article  Google Scholar 

  7. Punnappurath, A., Rajagopalan, A. N., Taheri, S., Chellappa, R., & Seetharaman, G. (2015). Face recognition across non-uniform motion blur, illumination, and pose. IEEE Transactions on Image Processing, 24(7), 2067–2082.

    Article  MathSciNet  Google Scholar 

  8. An, L., Kafai, M., Yang, S., & Bhanu, B. (2016). Person reidentification with reference descriptor. IEEE Transaction on Circuits and System for Video Technology, 26(4), 776–787.

    Article  Google Scholar 

  9. Tyagi, R., Tomar, G. S., & Shirvastava, L. (2016). Unconstrained face recognition quality: A review. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(11), 199–210.

    Article  Google Scholar 

  10. Tyagi, R., Tomar, G. S., & Baik, N. (2016). A survey of unconstrained face recogition algorithms and its application. International Journal of Security and its Application, 10(12), 369–376.

    Article  Google Scholar 

  11. Tyagi, R., & Tomar, G. S. (2016). Tranformation of image from color to gray scale using contrast among DPCM and LMS method. Internation Journal of Signal Processing, Image Processing and Pattern Recognition, 9(8), 11–24.

    Article  Google Scholar 

  12. Tyagi, R., & Tomar, G. S. (2016). Unfamiliar sides, video, image enhancement in face recognition. International Journal of Hybrid Information Technology, 9(11), 255–266.

    Article  Google Scholar 

  13. Yuan, X., Tang, D., Liu, Y., Ling, Q., & Fang, L. (2017). Magic glasses: From 2D to 3D. IEEE Transactions on Circuits and Systems for Video Technology, 27(4), 843–854.

    Article  Google Scholar 

  14. Tirunagari, S., Poh, N., Windridge, D., Iorliam, A., Suki, N., & Ho, A. T. S. (2015). Detection of face spoofing using visual dynamics. IEEE Transactions on Information Forensics and Security, 10(4), 762–777.

    Article  Google Scholar 

  15. Hsu, S. B., Han, C. C., Wen, M. G., Wu, Y. C., & Fan, K. C. (2016). Extraction of visual facial features for health management. IEEE Systems Journal, 10(3), 992–1002.

    Article  Google Scholar 

  16. Kamarol, S. K. A., Jaward, M. H., Parkkinen, J., & Parthiban, R. (2016). Spatiotemporal feature extraction for facial expression recognition. IET Image Processing, 10(7), 534–541.

    Article  Google Scholar 

  17. Jung, J. Y., Kim, S. W., Yoo, C. H., Park, W. J., & Ko, S. J. (2016). LBP-ferns-based feature extraction for robust facial recognition. IEEE Transactions on Consumer Electronics, 62(4), 446–453.

    Article  Google Scholar 

  18. Nguyen, H. T., & Caplier, A. (2015). Local patterns of gradients for face recognition. IEEE Transactions on Information Forensics and Security, 10(8), 1739–1751.

    Article  Google Scholar 

  19. Tordoff, B., Murray, D. W.: Guided Sampling and Consensus for Motion Estimation. In European Conference on Computer Vision ECCV 2002 Lecture Notes in Computer Science book series (LNCS), 2350 (pp. 82–96).

  20. Jeon, S., Yoon, I., Jang, J., Yang, S., Kim, J., & Paik, J. (2017). Robust video stabilization using particle keypoint update and l1-optimized camera path. MDPI Sensors, 2017, 1–18.

    Google Scholar 

  21. Litvin, A., Konrad, J., & Karl, C. W. (2003). Probabilistic video stabilization using Kalman filtering and mosaicking. Image and Video Communication and Processing, 2003, 663–674.

    Google Scholar 

  22. Alahi, A., Ortiz, R., Vandergheynst, P. (2012). FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, Providence, USA, June 2012 (pp.16–21).

  23. "Mathworks," MATLAB, 25 Dec 2017. https://www.mathworks.com/products/computer-vision.html.

  24. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: paradigm for model fitting with applications to image analysis and automated cartography. Magazine Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  25. Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (2011). Computer Aided Systems Theory—EUROCAST 2011, LNCS6928 Springer, 2011.

  26. Kanatani, K., Sugaya, Y., & Kanazawa, Y. (2016). Ellipse fitting for computer vision: Implementation and applications. Morgan and Claypool Publishers, 6(1), 1–141.

    Google Scholar 

  27. "https://in.mathworks.com/help/vision/ref/disparity. html?requestedDomain=true," MATLAB, https://in.mathworks.com/help/vision/ref/disparity.html?requestedDomain=true. Retrieved 01 01 2018

  28. Viola, P. A., Jones, M. J. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features, IEEE CVPR, 2001.

  29. Bradski, G. R. (1998). Real Time Face and Object Tracking as a Component of a Perceptual User Interface. In Proceedings of the 4th IEEE Workshop on Applications of Computer Vision, 1998.

  30. Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1), 138–156.

    Article  Google Scholar 

  31. Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  32. https://drive.google.com/open?id=10Wh1GwFFvI34-I4XLvP8ceT0ZukI-lxg.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetam Singh Tomar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Comparison Table with different Data-set.

Sample of dataset

Video length (second)

Dimension

Size (MB)

Data rate (Mbit/sec)

Frame per second (FPS)

Number of person identified

Acquisition distance of object from camera (m)

First

13

720 × 480

5.7

3.60

30.26

1

0.8

Second

48

480 × 480

1.8

0.29825

29.97

2

1.0

Third

15

1428 × 803

3.2

17.66

29.97

2

1.5

Fourth

26

720 × 480

10.4

3.2

25.91

1

0.5

Fifth

09

720 × 480

4.1

3.61

30.28

2

1.0

Sixth

10

720 × 480

4

3.27

26.67

6

2.0

Seventh

09

1920 × 1080

23.3

18.68

29

1

2.4

Eighth

07

1920 × 1080

17.7

20.24

30

1

2.0

Ninth

08

1920 × 1080

19.6

19.59

29

1

1.5

Tenth

09

1920 × 1080

23.1

18.54

30

1

3.0

Eleventh

09

1920 × 1080

22.5

20.09

30

1

3.5

Twelve

06

1920 × 1080

16.8

19.18

29

1

1.0

Thirteen

09

1920 × 1080

23.8

19.16

29

1

2.0

Fourteen

09

1920 × 1080

22.7

20.23

30

1

4.0

Fifteen

09

1920 × 1080

23.8

19.12

29

1

1.0

Sixteen

10

1920 × 1080

24.2

19.49

30

4

2.0

Seventeen

09

1920 × 1080

23.9

19.17

30

4

1.0

Eighteen

04

1920 × 1080

12.9

19.24

29

2

2.0

Nineteen

14

1920 × 1080

24.5

13.29

29

1

0.4

Twenty

08

1920 × 1080

20.0

18.13

29

2

1.4

Twenty one

26

176 × 144

0.79

0.15625

8

1

0.2

Twenty two

45

854 × 480

3.74

0.55175

25

1

0.5

Twenty three

14

1920 × 1080

30.4

16.38

29

1

5.0

Twenty four

12

1920 × 1080

24.7

16.625

30

5

3.0

Twenty five

13

1920 × 1080

32.4

20.14

30

1

2.0

Twenty six

08

1920 × 1080

19.6

19.65

29

1

3.0

Twenty seven

07

1920 × 1080

18.7

18.67

29

2

2.0

Twenty eight

08

1920 × 1080

19.7

19.75

30

6

5.0

Twenty nine

08

1920 × 1080

19.9

19.92

30

1

1.0

Thirty

07

1920 × 1080

17.2

19.67

30

2

2.0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, R., Tomar, G.S. & Shrivastava, L. Unconstrained Face Detection of Multiple Humans Present in the Video. Wireless Pers Commun 118, 901–917 (2021). https://doi.org/10.1007/s11277-020-08050-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08050-2

Keywords

Navigation