Skip to main content
Log in

An Efficient Approach for Big Data Aggregation Mechanism in Heterogeneous Wireless Connected Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently and due to the impressive growth in the amounts of transmitted data over the heterogeneous sensor networks and the emerged related technologies especially the Internet of Things in which the number of the connected devices and the data consumption are remarkably growing, big data has emerged as a widely recognized trend and is increasingly being talked about. The term big data is not only about the volume of data, but also refers to the high speed of transmission and the wide variety of information that is difficult to collect, store and process using the available classical technologies. Although the generated data by the individual sensors may not appear to be significant, all the data generated through the many sensors in the connected sensor networks are able to produce large volumes of data. Big data management imposes additional constraints on the wireless sensor networks and especially on the data aggregation process, which represents one of the essential paradigms in wireless sensor networks. Data aggregation process can represent a solution to the problem of big data by allowing data from different sources to be combined to eliminate the redundant ones and consequently reduce the amounts of data and the consumption of the available resources in the network. The main objective of this work is to propose a new approach for supporting big data in the data aggregation process in heterogeneous wireless sensor networks. The proposed approach aims to reduce the data aggregation cost in terms of energy consumption by balancing the data loads on the heterogeneous nodes. The proposal is improved by integrating the feedback control closed loop to reinforce the balance of the data aggregation load on the nodes, maintaining therefore an optimal delay and aggregation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hailing, C. L. J., Yong, M., Tianpu, L., Wei, L., & Ze, Z. (2005). Overview of Wireless Sensor Networks [J]. Journal of Computer Research and Development, 1, 021.

    Google Scholar 

  2. RAJARAVIVARMA, V., YANG, Yi, et YANG, Teng (2003) “An overview of wireless sensor network and applications” In: Proceedings of the 35th Southeastern Symposium on System Theory. IEEE. 23; 432–436

  3. Matin, M. A., & Islam, M. M. (2012). Overview of wireless sensor network. Wireless Sensor Networks-Technology and Proto-cols., 12, 1–3.

    Google Scholar 

  4. Wu, C. H., & Chung, Y. C. (2007). Heterogeneous wireless sensor network deployment and topology control based on irregular sensor model. International Conference on Grid and Pervasive Computing (pp. 78–88). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  5. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols and applications. IEEE communications surveys & tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  6. Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A. V. (2017). The role of big data analytics in Internet of Things. Computer Networks, 129, 459–471.

    Article  Google Scholar 

  7. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods and analytics. International journal of information management., 35(2), 137–144.

    Article  Google Scholar 

  8. Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media., 15, 11–17.

    Google Scholar 

  9. Harb, H., Idrees, A. K., Jaber, A., Makhoul, A., Zahwe, O., & Taam, M. A. (2017). Wireless sensor networks: A big data source in Internet of Things. International Journal of Sensors Wireless Communications and Control, 7(2), 93–109.

    Google Scholar 

  10. Boubiche, S., Boubiche, D. E., & Azzedine, B. (2016). Integrating Big data paradigm in WSNs. Proceedings of the International Conference on Big Data and Advanced Wireless Technologies., 82, 1–4.

    Google Scholar 

  11. Sundaramurthy, A., & Chitra, V. (2016). Big Data Gathering in Wireless Sensor Network Using Hybrid Dynamic Energy Routing Protocol. BEST International Journal of Management, Information Technology and Engineering., 4(4), 59–68.

    Google Scholar 

  12. Ang, K. L. M., Seng, J. K. P., & Zungeru, A. M. (2017). Optimizing energy consumption for big data collection in large-scale wireless sensor networks with mobile collectors. IEEE Systems Journal, 12(1), 616–626.

    Article  Google Scholar 

  13. Lee, I. (2017). Big data: Dimensions, evolution, impacts and challenges. Business Horizons, 60(3), 293–303.

    Article  Google Scholar 

  14. Zhang, J., & Huang, M. L (2013) “5Ws model for big data analysis and visualization” In 2013 IEEE 16th International Conference on Computational Science and Engineering. IEEE. 24; 1021–1028.

  15. Jangra, A (2010) “Wireless sensor network (WSN): Architectural design issues and challenges”.

  16. Tole, A. A. (2013). Big data challenges. Database systems journal, 4(3), 31–40.

    MathSciNet  Google Scholar 

  17. Halde, S., & Khot, S. (2016). Big data in wireless sensor network: issues & challenges. Int. J. Adv. Eng. Manag. Sci, 2, 1618–1621.

    Google Scholar 

  18. Bhadani, A. K., &Jothimani, D (2016)” Big data: challenges, opportunities and realities” In: Effective big data management and opportunities for implementation. IGI Global. 8; 1–24.

  19. Sivarajah, U., Kamal, M. M., & Irani, Z. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286.

    Article  Google Scholar 

  20. Boubiche, S., Boubiche, D. E., Bilami, A., & Toral-Cruz, H. (2018). Big data challenges and data aggregation strategies in wireless sensor networks. IEEE Access, 6, 20558–20571.

    Article  Google Scholar 

  21. Tsai, T., Lan, W., Liu, C., & Sun, M. (2013). Distributed Compressive Data Aggregation in Large-Scale Wireless Sensor Networks. Journal of Advances in Computer Networks., 1(4), 20–25.

    Google Scholar 

  22. Karim, L., & Al-kahtani, M. S. (2016). “Sensor Data Aggregation in a Multi-layer Big Data Framework”, Information Technology. Electronics and Mobile Communication Conference., 21, 1–7.

    Google Scholar 

  23. L. Cheng, S. Guo, Y. Wang and Y. Yang (2016) “Lifting Wavelet Compression Based Data Aggregation in Big Data Wireless Sensor Networks”, IEEE 22nd International Conference on Parallel and Distributed Systems China. 23; 561–568.

  24. J. Li, S. Guo, Y. Yang and J. He (2016) “Data Aggregation with Principal Component Analysis in Big Data Wireless Sensor Networks”. 12th International Conference on Mobile Ad-Hoc and Sensor Networks. 45–51.

  25. Wu, D., Yang, B., & Wang, R. (2016). Scalable privacy-preserving big data aggregation mechanism. Digital Communications and Networks, 2(3), 122–129.

    Article  Google Scholar 

  26. Din, S., Ahmad, A., Paul, A., UllahRathore, M. M., & Gwanggil, J. (2017). A Cluster-based Data Fusion Technique to Analyze Big Data in Wireless Multi-Sensor System. IEEE Access, 5, 5069–5083.

    Article  Google Scholar 

  27. Merzoug, M. A., Boukerche, A., Mostefaoui, A., & Chouali, S. (2019). Spreading Aggregation: A distributed collision-free approach for data aggregation in large-scale wireless sensor networks. Journal of Parallel and Distributed Computing, 125, 121–134.

    Article  Google Scholar 

  28. Karim, L., Nasser, N., Abdulsalam, H., Moukadem, I., & “An efficient data aggregation approach for large scale wireless sensor networks”. In, . (2010). IEEE Global Telecommunications Conference GLOBECOM 2010. IEEE, 2010, 1–6.

    Google Scholar 

  29. Liu, C., Guo, S., Shi, Y., & Yang, Y. (2017). Deterministic binary matrix based compressive data aggregation in big data WSNs. Telecommunication Systems, 66(3), 345–356.

    Article  Google Scholar 

  30. Maivizhi, R., & Yogesh, P (2020) “Concealed Multidimensional Data Aggregation in Big Data Wireless Sensor Networks”. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 19

  31. Dean, J., &Ghemawat, S (2004) “MapReduce: Simplified data processing on large clusters”

  32. Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Elmeleegy, K., & Sears, R (2010) “MapReduce online”. In: Nsdi. 20.

  33. Dean, J., & Ghemawat, S. (2010). MapReduce: a flexible data processing tool. Communications of the ACM, 53(1), 72–77.

    Article  Google Scholar 

  34. Jung, I. Y., Kim, K. H., Han, B. J., & Jeong, C. S. (2014). Hadoop-based distributed sensor node management system. International Journal of Distributed Sensor Networks, 10(3), 601868.

    Article  Google Scholar 

  35. Wagstaff, K., Cardie, C., Rogers, S., &Schrödl, S (2001) “Con-strained k-means clustering with background knowledge”. In: Icml. 21; 577–584.

  36. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2), 451–461.

    Article  Google Scholar 

  37. Franklin, G. F., Powell, J. D., Emami-Naeini, A., & Powell, J. D. (1994). Feedback control of dynamic systems. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  38. Dorf, R. C., & Bishop, R. H (2011) “Modern control systems”. Pearson.

  39. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T (2006) “Cross-level sensor network simulation with cooja”. In: Proceedings. 2006 31st IEEE Conference on Local Computer Networks. IEEE. 12; 641–648.

  40. Jurdak, R., Nafaa, A., & Barbirato, A. (2008). Large scale environmental monitoring through integration of sensor and mesh networks. Sensors, 8(11), 7493–7517.

    Article  Google Scholar 

  41. Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.

    Article  Google Scholar 

  42. Chatterjea, S., & Havinga, P. (2003). A dynamic data aggregation scheme for wireless sensor networks. Program for Research on Integrated Systems and Circuits: Proc.

    Google Scholar 

  43. Boukerche, A., Mostefaoui, A., & Melkemi, M. (2016). Efficient and robust serial query processing approach for large-scale wireless sensor networks. Ad Hoc Networks, 47, 82–98.

    Article  Google Scholar 

  44. Mostefaoui, A., Boukerche, A., Merzoug, M. A., & Melkemi, M. (2015). A scalable approach for serial data fusion in Wireless Sensor Networks. Computer Networks, 79, 103–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Boubiche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubiche, S., Bilami, A. & Boubiche, D.E. An Efficient Approach for Big Data Aggregation Mechanism in Heterogeneous Wireless Connected Sensor Networks. Wireless Pers Commun 118, 1405–1437 (2021). https://doi.org/10.1007/s11277-021-08082-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08082-2

Keywords

Navigation