Skip to main content

Advertisement

Log in

Enabling Full-duplex in MEC Networks Using Uplink NOMA in Presence of Hardware Impairments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To satisfy the fast growth of Internet of Things (IoT) or development of applications in the fifth generation (5G) wireless networks, the expected systems need two main functions such as massive connectivity of IoT devices and the low latency. Fortunately, non-orthogonal multiple access (NOMA) has been recommended as a promising approach for 5G networks to satisfy concerned requirements and to significantly improve the network capacity. Together with advances of NOMA scheme, mobile edge computing (MEC) is recognized as one of the key emerging approaches to improve the quality of service and reduce the latency for 5G networks. In order to capture the potential gains of NOMA-aided MEC systems, this paper proposes design of multiple antennas and full-duplex for an edge computing aware NOMA architecture. As expected, such NOMA-aided MEC systems can enjoy the benefits of uplink NOMA in reducing MEC users’ uplink outage probability. To this end, we derive expression of outage probability for signals corresponding two-user model at uplink. Especially, degraded performance might happens in practice under impact of hardware impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bariah, L., Al-Dweik, A., & Muhaidat, S. (2018). “On the performance of nonorthogonal multiple access systems with imperfect successive interference cancellation,” In Proceedings of the IEEE International Conference in Communication Workshops (ICC), May 2018, pp. 1-6.

  2. Al-Imari, M., Xiao, P., & Imran, M. A. (2015) “Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks,” In Proceedings of the international symposium on wireless communication systems (ISWCS), Aug. 2015, pp. 151-155.

  3. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013) “Systemlevel performance evaluation of downlink non-orthogonal multiple access (NOMA),” In Proceedings of the IEEE 24th Annual IEEE international symposium personal indoor, mobile radio communication (PIMRC), Sep. 2013, pp. 611-615.

  4. Zuo, H., & Tao, X. (2017) “Power allocation optimization for uplink nonorthogonal multiple access systems,” In Proceedings of the 9th international conference on wireless communication and signal process. (WCSP), Oct. 2017, pp. 1–5.

  5. Kieu, T. N., Do, Dinh-Thuan, Xuan, X. N., Nhat, T. N., Duy, H. H., & “Wireless information and power transfer for full duplex relaying networks: performance analysis,” In Proceedings of AETA,. (2015). Recent advances in electrical engineering and related sciences. Lecture notes in electrical engineering, 371, 2016.

  6. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2017). Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Communications Magazine, 55(10), 176–183.

    Article  Google Scholar 

  7. Dai, L., Wang, B., Yuan, Y., Han, S., Chin-Lin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunitiesand future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  8. Ding, Z., et al. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  9. Ding, Z., Fan, P., & Poor, H. V. (2018). On the coexistence between full-duplex and NOMA. IEEE Wireless Communications Letters, 7(5), 692–695.

    Article  Google Scholar 

  10. Zhou, Y., Wong, V. W. S., & Schober, R. (2018). Stable throughput regions of opportunistic NOMA and cooperative NOMA with full-duplex relaying. IEEE Transactions on Wireless Communications, 17(8), 5059–5075.

    Article  Google Scholar 

  11. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  12. Tan Zheng, H. E., Madhukumar, A. S., Sirigina, R. P., & Krishna, A. K., (2019). “An Outage Probability Analysis of Full-Duplex NOMA in UAV Communications,” In IEEE Wireless Communications and Networking Conference (WCNC). Marrakesh, Morocco, 2019, 1–5.

  13. Shahab, M. B., & Shin, S. Y. (2018). Time shared half/full-duplex cooperative NOMA with clustered cell edge users. IEEE Communications Letters, 22(9), 1794–1797.

    Article  Google Scholar 

  14. Xu, B., Xiang, Z., Ren, P., & Guo, X. (2020). Outage performance of downlink full-duplex network-coded cooperative NOMA. IEEE Wireless Communications Letters., 10(1), 26–29.

    Article  Google Scholar 

  15. Kurup, R. R., & Babu, A. V. (2020). Power adaptation for improving the performance of time switching SWIPT based full duplex cooperative NOMA network. IEEE Communications Letters, 24(12), 2956–2960.

    Article  Google Scholar 

  16. Do, D.-T. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems (Springer), 62(2), 449–459.

    Article  Google Scholar 

  17. Zou, Y., Zhu, J., & Zheng, B. (2014). “Outage analysis of multi-relay selection for cognitive radio with imperfect spectrum sensing,” In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, pp. 1262–1266.

  18. Ju, M., & Hwang, K. (2015). Outage equivalence of opportunistic relaying and selection cooperation in presence of co-channel interference. IEEE Transactions on Wireless Communications, 14(6), 2981–2991.

    Article  Google Scholar 

  19. Do, D.-T. (2015). Power switching protocol for two-way relaying network under hardware impairments. Radioengineering, 24(3), 765–771.

    Article  Google Scholar 

  20. Kundu, C., Ghose, S., & Bose, R. (2015). Secrecy outage of dual-hop regenerative multi-relay system with relay selection. IEEE Transactions on Wireless Communications, 14(8), 4614–4625.

    Article  Google Scholar 

  21. Do, D-T. (2015). Time Power Switching based Relaying Protocol in Energy Harvesting Mobile Node: Optimal Throughput Analysis. Mobile Information Systems.

  22. Cheng, X., Chen, C., Zhang, W., & Yang, Y. (2017). 5G-enabled cooperative intelligent vehicular (5GenCIV) framework: When Benz meets Marconi. IEEE Intelligent Systems, 32(3), 53–59.

    Article  Google Scholar 

  23. Zhang, L., Wu, J., Mumtaz, S., Li, J., Gacanin, H. & Rodrigues, J. J. P. C. (2019). “Edge-to-edge cooperative artificial intelligence in smart cities with ondemand learning offloading,” In Proceedings of the IEEE Global Communication Conference (GLOBECOM), Waikoloa, HI, USA, pp. 1–6.

  24. Nguyen, T.-L., & Do, D.-T. (2018). Power allocation schemes for wireless powered NOMA systems with imperfect CSI: An application in multiple antenna-based relay. International Journal of Communication Systems, 31(15), e3789.

    Article  Google Scholar 

  25. Do, D.-T., & Le, A.-T. (2019). NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison. Computer Communications, 146, 144–154.

    Article  Google Scholar 

  26. Li, J., Dang, S., Wen, M., Jiang, X.-Q., Peng, Y., & Hai, H. (2019). Layered orthogonal frequency division multiplexing with index modulation. IEEE Systems Journal, 13(4), 3793–3801.

    Article  Google Scholar 

  27. Liang, X., Wu, Y., Ng, D. W. K., Zuo, Y., Jin, S., & Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters, 21(11), 2428–2431.

    Article  Google Scholar 

  28. Diao, X., Zheng, J., Wu, Y., & Cai, Y. (2019). Joint computing resource, power, and channel allocations for D2D-assisted and NOMA-based mobile edge computing. IEEE Access, 7, 9243–9257.

    Article  Google Scholar 

  29. Kiani, A., & Ansari, N. (2018). Edge computing aware NOMA for 5G networks. IEEE Internet of Things Journal, 5(2), 1299–1306.

    Article  Google Scholar 

  30. Liu, Y. (2019). Exploiting NOMA for cooperative edge computing. IEEE Wireless Communications, 26(5), 99–103.

    Article  Google Scholar 

  31. Ye, Y., Hu, R. Q., Lu, G., & Shi, L. (2020). Enhance latency-constrained computation in MEC networks using uplink NOMA. IEEE Transactions on Communications, 68(4), 2409–2425.

    Article  Google Scholar 

  32. Kader, M. F., & Shin, S. Y. (2018). Coordinated direct and relay transmission using uplink NOMA. IEEE Wireless Communications Letters, 7(3), 400–403.

    Article  Google Scholar 

  33. Ding, F., Wang, H., Zhang, S., & Dai, M. (2018). Impact of residual hardware impairments on non-orthogonal multiple access based amplify-and-forward relaying networks. IEEE Access, 6, 15117–15131.

    Article  Google Scholar 

  34. Bjornson, E., Matthaiou, M., & Debbah, M. (2013). A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Transactions on Communications, 61(11), 4512–4525.

    Article  Google Scholar 

  35. Fan, L., Yang, N., Duong, T. Q., Elkashlan, M., & Karagiannidis, G. K. (2016). Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Transactions on Wireless Communications, 15(6), 3856–3867.

    Article  Google Scholar 

  36. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communications Letters, 21(5), 1159–1162.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Ethics declarations

Conflicts of interest:

We have no conflicts of interest

Availability of data and material (data transparency):

Not applicable

Code availability (software application or custom code):

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX: A

Proof of Proposition 1

The closed-form of \({\Lambda _1}\) and \({\Lambda _2}\) in (10). The first component \({\Lambda _1}\) can be computed by

$$\begin{aligned} \begin{array}{l} {\Lambda _1} = 1 - \Pr \left( {\beta _{{U_{n*}}{B_1}}^{\left( {{v_1}} \right) } \ge \varphi _1^{\left( {FD} \right) }} \right) \\ = 1 - \Pr \left( {{{\left| {{f_{1n*}}} \right| }^2} \ge \frac{{\varphi _1^{\left( {FD} \right) }\left( {\left( {{\partial _2} + m_U^2} \right) \mu {{\left| {{f_{2n*}}} \right| }^2} + \sigma \mu {{\left| {{g_1}} \right| }^2} + 1} \right) }}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) \\ = 1 - \int _0^\infty {\int _0^\infty {\left( {1 - {F_{{{\left| {{f_{1n*}}} \right| }^2}}}\left( {\frac{{\varphi _1^{\left( {FD} \right) }\left( {\left( {{\partial _2} + m_U^2} \right) \mu x + \sigma \mu y + 1} \right) }}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) } \right) } {f_{{{\left| {{f_{2n*}}} \right| }^2}}}\left( x \right) } \\ \times {f_{{{\left| {{g_1}} \right| }^2}}}\left( y \right) dxdy\\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) {{\left( { - 1} \right) }^{n + t - 2}}} } \frac{t}{{{\alpha _{2n}}}}\frac{1}{{{\alpha _{g1}}}}\exp \left( { - \frac{{n\varphi _1^{\left( {FD} \right) }}}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{1n}}}}} \right) \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{\left( {{\partial _2} + m_U^2} \right) n\varphi _1^{\left( {FD} \right) }}}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}}} + \frac{t}{{{\alpha _{2n}}}}} \right) x} \right) dx} \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _1^{\left( {FD} \right) }\sigma }}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}}} + \frac{1}{{{\alpha _{g1}}}}} \right) y} \right) } dy\\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) {{\left( { - 1} \right) }^{n + t - 2}}} } \frac{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}t}}{{\left( {{\partial _2} + m_U^2} \right) n\varphi _1^{\left( {FD} \right) }{\alpha _{2n}} + \left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}t}}\\ \times \frac{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}}}{{n\varphi _1^{\left( {FD} \right) }\sigma {\alpha _{g1}} + \left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) {\alpha _{1n}}}}\exp \left( { - \frac{{n\varphi _1^{\left( {FD} \right) }}}{{\left( {{\partial _1} - \varphi _1^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{1n}}}}} \right) . \end{array} \end{aligned}$$
(A.1)

Then, it can be achieved \({\Lambda _2}\) as

$$\begin{aligned} \begin{array}{l} {\Lambda _2} = 1 - \Pr \left( {\beta _{{U_{n*}}{B_1}}^{\left( {{v_2}} \right) } \ge \varphi _2^{\left( {FD} \right) }} \right) \\ = 1 - \Pr \left( {{{\left| {{f_{2n*}}} \right| }^2} \ge \frac{{\varphi _2^{\left( {FD} \right) }\left( {m_U^2\mu {{\left| {{f_{1n*}}} \right| }^2} + \sigma \mu {{\left| {{g_1}} \right| }^2} + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) \\ = 1 - \int _0^\infty {\int _0^\infty {\left( {1 - {F_{{{\left| {{f_{2n*}}} \right| }^2}}}\left( {\frac{{\varphi _2^{\left( {FD} \right) }\left( {m_U^2\mu x + \sigma \mu y + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) } \right) {f_{{{\left| {{f_{1n*}}} \right| }^2}}}\left( x \right) } } \\ \times {f_{{{\left| {{g_1}} \right| }^2}}}\left( y \right) dxdy\\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) {{\left( { - 1} \right) }^{n + t - 2}}} } \frac{t}{{{\alpha _{1n}}}}\frac{1}{{{\alpha _{g1}}}}\exp \left( { - \frac{{n\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{2n}}}}} \right) \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _2^{\left( {FD} \right) }m_U^2}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}} + \frac{t}{{{\alpha _{1n}}}}} \right) x} \right) dx} \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _2^{\left( {FD} \right) }\sigma }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}} + \frac{1}{{{\alpha _{g1}}}}} \right) y} \right) dy} \\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) {{\left( { - 1} \right) }^{n + t - 2}}} } \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}t}}{{n\varphi _2^{\left( {FD} \right) }m_U^2{\alpha _{1n}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}t}}\\ \times \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}}{{n\varphi _2^{\left( {FD} \right) }\sigma {\alpha _{g1}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}}\exp \left( { - \frac{{n\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{2n}}}}} \right) . \end{array} \end{aligned}$$
(A.2)

By plugging (A.1), (A.2) into (10) it can be calculated outage probability \({\mathrm{P}}_{BS1}^{\left( {FD} \right) }\). The proof is completed. \(\square \)

APPENDIX: B

Proof of Proposition 2

The closed-form expression of \({\Xi _1}\) in (15) is given by

$$\begin{aligned} \begin{array}{l} {\Xi _1} = 1 - \Pr \left( {{\beta _{{B_1}{B_2}}} \ge \varphi _2^{\left( {FD} \right) }} \right) \\ = 1 - \Pr \left( {{{\left| q \right| }^2} \ge \frac{{\varphi _2^{\left( {FD} \right) }\left( {\sigma \mu {{\left| {{g_2}} \right| }^2} + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) \mu }}} \right) \\ = 1 - \int _0^\infty {\left( {1 - {F_{{{\left| q \right| }^2}}}\left( {\frac{{\varphi _2^{\left( {FD} \right) }\left( {\sigma \mu x + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) \mu }}} \right) } \right) {f_{{{\left| {{g_2}} \right| }^2}}}\left( x \right) dx} \\ = 1 - \frac{t}{{{\alpha _{g2}}}}\exp \left( { - \frac{{\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) \mu {\alpha _q}}}} \right) \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{\varphi _2^{\left( {FD} \right) }\sigma }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) {\alpha _q}}} + \frac{1}{{{\alpha _{g2}}}}} \right) x} \right) dx} \\ = 1 - \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) {\alpha _q}}}{{\varphi _2^{\left( {FD} \right) }\sigma {\alpha _{g2}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) {\alpha _q}}}\exp \left( { - \frac{{\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_B^2} \right) \mu {\alpha _q}}}} \right) . \end{array} \end{aligned}$$
(B.1)

Replacing (A.1), (A.2), (B.1) into (15). This completes the proof. \(\square \)

APPENDIX: C

Proof of Proposition 3

The closed-form formula of \({\Theta _1}\) in (20) is computed by

$$\begin{aligned} \begin{array}{l} {\Theta _1} = 1 - \Pr \left( {\beta _{{U_{n*}}{B_1}}^{\left( {{v_2} - ip} \right) } \ge \varphi _2^{\left( {FD} \right) }} \right) \\ = 1 - \Pr \left( {{{\left| {{f_{2n*}}} \right| }^2} \ge \frac{{\varphi _2^{\left( {FD} \right) }\left( {{\partial _1}\mu {{\left| {\widetilde{{f_{1n*}}}} \right| }^2} + m_U^2\mu {{\left| {{f_{1n*}}} \right| }^2} + \sigma \mu {{\left| {{g_1}} \right| }^2} + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) \\ = 1 - \int _0^\infty {\int _0^\infty {\int _0^\infty {\left( {1 - {F_{{{\left| {{f_{2n*}}} \right| }^2}}}\left( {\frac{{\varphi _2^{\left( {FD} \right) }\left( {{\partial _1}\mu x + m_U^2\mu y + \sigma \mu z + 1} \right) }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu }}} \right) } \right) } {f_{{{\left| {\widetilde{{f_{1n*}}}} \right| }^2}}}\left( x \right) } } \\ \times {f_{{{\left| {{f_{1n*}}} \right| }^2}}}\left( y \right) {f_{{{\left| {{g_1}} \right| }^2}}}\left( z \right) dxdydz\\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\sum \limits _{r = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) \left( \begin{array}{l} N\\ r \end{array} \right) {{\left( { - 1} \right) }^{n + t + r - 3}}} } } \\ \times \frac{t}{{\kappa {\alpha _{ip}}}}\frac{r}{{{\alpha _{1n}}}}\frac{1}{{{\alpha _{g1}}}}\exp \left( { - \frac{{n\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{2n}}}}} \right) \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _2^{\left( {FD} \right) }{\partial _1}}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}} + \frac{t}{{\kappa {\alpha _{ip}}}}} \right) x} \right) dx} \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _2^{\left( {FD} \right) }m_U^2}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}} + \frac{r}{{{\alpha _{1n}}}}} \right) y} \right) dy} \\ \times \int _0^\infty {\exp \left( { - \left( {\frac{{n\varphi _2^{\left( {FD} \right) }\sigma }}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}} + \frac{1}{{{\alpha _{g1}}}}} \right) z} \right) } dz\\ = 1 - \sum \limits _{n = 1}^N {\sum \limits _{t = 1}^N {\sum \limits _{r = 1}^N {\left( \begin{array}{l} N\\ n \end{array} \right) \left( \begin{array}{l} N\\ t \end{array} \right) \left( \begin{array}{l} N\\ r \end{array} \right) {{\left( { - 1} \right) }^{n + t + r - 3}}} } } \\ \times \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}t}}{{n\varphi _2^{\left( {FD} \right) }{\partial _1}\kappa {\alpha _{ip}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}t}}\\ \times \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}r}}{{n\varphi _2^{\left( {FD} \right) }m_U^2{\alpha _{1n}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}r}}\\ \frac{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}}{{n\varphi _2^{\left( {FD} \right) }\sigma {\alpha _{g1}} + \left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) {\alpha _{2n}}}}\exp \left( { - \frac{{n\varphi _2^{\left( {FD} \right) }}}{{\left( {{\partial _2} - \varphi _2^{\left( {FD} \right) }m_U^2} \right) \mu {\alpha _{2n}}}}} \right) . \end{array} \end{aligned}$$
(C.1)

By plugging (A.1), (C.1) into (20) it can be calculated the OP at BS1 in term of imperfect SIC. The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, MS., Do, DT., Zaharis, Z.D. et al. Enabling Full-duplex in MEC Networks Using Uplink NOMA in Presence of Hardware Impairments. Wireless Pers Commun 120, 1945–1973 (2021). https://doi.org/10.1007/s11277-021-08102-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08102-1

Keywords

Navigation