Skip to main content

Advertisement

Log in

Optimal Power Allocation and Harvesting Duration for NOMA Systems in the Presence of Nakagami Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we derive and optimize the total throughput of non orthogonal multiple access (NOMA) with energy harvesting. The source S harvests energy from radio frequency signal received from node A. The source uses the harvested energy to transmit data to N NOMA users classified using instantaneous or average power of channel gains. We optimize the powers allocated to NOMA users and harvesting duration to maximize the total throughput. We also derive packet waiting time and total delays for all NOMA users. We optimize powers allocated to NOMA users and harvesting duration to minimize a combination of total delays of all users. Our results are valid for Nakagami channels with arbitrary positions of users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and material (data transparency):

Data and material are not available.

References

  1. Li, Q. C., Niu, H., Papathanassiou, A. T., & Wu, G. (2014). 5G network capacity: Key elements and technologies. IEEE Vehicular Technology Magazine, 9(1), 71–78.

    Article  Google Scholar 

  2. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System- level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of IEEE International Symposium Personal, Indoor Mobile Radio Communications (PIMRC), pp. 611–615.

  3. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Communications Letters, 5(4), 416–419.

    Article  Google Scholar 

  5. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.

    Article  Google Scholar 

  6. Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks, 18(3), 364–374.

    Article  Google Scholar 

  7. Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  8. Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with co- operative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.

    Article  Google Scholar 

  9. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Article  Google Scholar 

  10. Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of IEEE International Symposium on Information Theory (ISIT), Toronto, Canada, pp. 1612–1616.

  11. Sun, H., Zhou, F., Hu, R. Q., & Hanzo, L. (2019). Robust beamforming design in a NOMA cognitive radio network relying on SWIPT. IEEE Journal on Selected Areas in Communications, 37(1), 142–155.

    Article  Google Scholar 

  12. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.

    Article  Google Scholar 

  13. Bhattacharjee, S., Acharya, T., & Bhattacharya, U. (2018). NOMA inspired multicasting in cognitive radio networks. IET Communications, 12(15), 1845–1853.

    Article  Google Scholar 

  14. Zhou F., Chu Z., Sun, H., & Leung, V. C. M. (2018). Resource allocation for secure MISO-NOMA cognitive radios relying on SWIPT. In IEEE International Conference on Communications (ICC), pp. 1–6.

  15. Liu, M., Song, T., & Gui, G. (2018). Deep cognitive perspective: Resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894.

    Article  Google Scholar 

  16. Xu, L., Zhou, Y., Wang, P., & Liu, W. (2018). Max–Min resource allocation for video transmission in NOMA-based cognitive wireless networks. IEEE Transactions on Communications, 66(11), 5804–5813.

    Article  Google Scholar 

  17. Manglayev, T., Kizilirmak, R., Caglar, K., & Yau, H. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400.

    Article  Google Scholar 

  18. Panda, S. (2020). Joint user patterning and power control optimization of MIMO-NOMA systems. Wireless Personal Communications, 112, 2557–2573.

    Article  Google Scholar 

  19. Le, T. A., & Kong, H. Y. (2020). Effects of hardware impairment on the cooperative NOMA EH relaying network over Nakagami-m fading channels. Wireless Personal Communications, Online Published November.

  20. Reddy, B. S. K. (2020). Experimental validation of non-orthogonal multiple access (NOMA) technique using software defined radio. Wireless Personal Communications, Online Published November.

  21. Withers, C. S., & Nadarajah, S. (2013). On the product of gamma random variables. Quality & Quantity, 47, 545–552.

    Article  Google Scholar 

  22. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  23. Proakis, J. (2007). Digital communications (5th ed.). New York: Mac Graw-Hill.

    MATH  Google Scholar 

  24. Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society: Series B (Methodological), 34, 308–310.

    MathSciNet  MATH  Google Scholar 

  25. Chan, W. C., Lu, T. C., & Chen, R. J. (1997). Pollaczek–Khinchin formula for the M/G/1 queue in discrete time with vacations. IEE Proceedings-Computers and Digital Techniques, 144(4), 222–226.

    Article  Google Scholar 

Download references

Funding

This publication received no funding.

Author information

Authors and Affiliations

Authors

Contributions

Authors’ contributions: The paper is the contribution of Prof. Nadhir Ben Halima and Prof. Hatem Boujemaa.

Corresponding author

Correspondence to Nadhir Ben Halima.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest for this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Halima, N., Boujemaa, H. Optimal Power Allocation and Harvesting Duration for NOMA Systems in the Presence of Nakagami Channels. Wireless Pers Commun 118, 1793–1819 (2021). https://doi.org/10.1007/s11277-021-08116-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08116-9

Keywords

Navigation