Skip to main content
Log in

Hybrid Detection for Cooperative Cognitive Radio Using AWT and HDWT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A lot of research shows that spectrum is not effectively used in wireless communications. There are several gaps in spectrum that are unused. Cognitive radio (CR) is a smart technique of addressing inefficient usage of spectrum resources. Spectrum sensing is a vital task in cognitive radio systems. The objective of the spectrum sensing process is to investigate the presence and absence of primary user signals in different spectrum holes. To increase the feasibility of the spectrum sensing process, it can be implemented in a cooperative mode. The cooperative spectrum sensing depends on a decision making task at a group of secondary users. One of the most popular spectrum sensing techniques is the energy detection. Unfortunately, this technique fails in low SNR scenarios to give high detection results. So, there is a need for cooperative spectrum sensing in addition to noise reduction techniques to enhance the performance of the CR system. This paper presents noise reduction techniques based on additive wavelet transform (AWT) with homomorphic decomposition and Haar discrete wavelet transform (HDWT) with homomorphic decomposition to reduce the noise prior to the decision making process. This scenario is investigated with several fusion rules that are used for the cooperative spectrum sensing with fixed-time sensing. Simulation results prove that with OR fusion rule, the proposed scenario increases the probability of detection in the range of SNR from − 20 to − 15 dB using the AWT with homomorphic decomposition. The achievable throughput increases using the HDWT with homomorphic decomposition. The AND fusion rule is not recommended with the HDWT, but the probability of detection is high with the AWT. The majority fusion rule achieves high throughput with the HDWT and a high probability of detection with the AWT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Vadivelu, R., Sankaranarayanan, K., & Vijayakumari, V. (2014). Matched filter based spectrum sensing for cognitive radio at low signal to noise ratio. Journal of Theoretical and Applied Information Technology 62(1), 107–113.‏

  3. Lv, Q., & Gao, F. (2015). Matched filter based spectrum sensing and power level recognition with multiple antennas. In 2015 IEEE China summit and international conference on signal and information processing (ChinaSIP) (pp. 305–309). IEEE.

  4. Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.

    Article  Google Scholar 

  5. Patil, V. M., & Patil, S. R. (2016). A survey on spectrum sensing algorithms for cognitive radio. In 2016 International Conference on Advances in Human Machine Interaction (HMI). IEEE.

  6. Akyildiz, I. F., et al. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  7. Rao, A. M., et al. (2010). Energy detection technique for spectrum sensing in cognitive radio. SASTECH, 9(1), 73–78.

    Google Scholar 

  8. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  9. Liu, Y., et al. (2016). From action to activity: Sensor-based activity recognition. Neurocomputing, 181, 108–115.

    Article  Google Scholar 

  10. Liu, Y. et al. (2015) Action2Activity: Recognizing complex activities from sensor data. In Twenty-fourth international joint conference on artificial intelligence.

  11. Chen, X., Chen, H. H., & Meng, W. (2014). Cooperative communications for cognitive radio networks—From theory to applications. IEEE Communications Surveys and Tutorials, 16(3), 1180–1192.

    Article  Google Scholar 

  12. Abdulsattar, M. A., & Hussein, Z. A. (2012). Energy detection technique for spectrum sensing in cognitive radio: A survey. International Journal of Computer Networks and Communications, 4(5), 223.

    Article  Google Scholar 

  13. An, C., Si, P. and Ji, H. (2011) Wideband spectrum sensing scheme in cognitive radio networks with multiple primary networks. In 2011 IEEE wireless communications and networking conference. IEEE.

  14. Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(3), 1128–1138.

    Article  Google Scholar 

  15. Zhang, Q., et al. (2010). Introduction to the issue on cooperative communication and signal processing in cognitive radio systems. IEEE Journal of Selected Topics in Signal Processing, 5(1), 1–4.

    Article  Google Scholar 

  16. Liu, X., Jia, M., & Tan, X. (2013). Threshold optimization of cooperative spectrum sensing in cognitive radio networks. Radio Science, 48(1), 23–32.

    Article  Google Scholar 

  17. Kobeissi, H., Bazzi, O., & Nasser, Y. (2013). Wavelet denoising in cooperative and NonCooperative spectrum sensing. In ICT 2013 (pp. 1–5). IEEE.

  18. Wang, H., Xu, Y., Su, X., & Wang, J. (2010). Cooperative spectrum sensing with wavelet denoising in cognitive radio. In 2010 IEEE 71st vehicular technology conference (pp. 1–5). IEEE.

  19. Abou ElHassan, M., Abd-Elnaby, M., El-Dolil, S. A., & Abd El-Samie, F. E. (2019). Adaptively controlled cooperative spectrum sensing using OR fusion rule for throughput maximization in cognitive radio. Wireless Personal Communications, 109(4), 2095–2105.

    Article  Google Scholar 

  20. Plata, D. M. M., & Reátiga, Á. G. A. (2012). Evaluation of energy detection for spectrum sensing based on the dynamic selection of detection-threshold. Procedia Engineering, 35, 135–143.

    Article  Google Scholar 

  21. Xu, J. Y., & Alam, F. (2009). Adaptive energy detection for cognitive radio: An experimental study. In 2009 12th international conference on computers and information technology (pp. 547–551). IEEE.

  22. Tang, L., Chen, Y., Hines, E. L., & Alouini, M. S. (2011). Effect of primary user traffic on sensing-throughput tradeoff for cognitive radios. IEEE Transactions on Wireless Communications, 10(4), 1063–1068.

    Article  Google Scholar 

  23. Patil, V. M., & Patil, S. R. (2016). A survey on spectrum sensing algorithms for cognitive radio. In 2016 international conference on advances in human machine interaction (HMI) (pp. 1–5). IEEE.

  24. Barry, J. R., Lee, E. A., & Messerschmitt, D. G. (2012). Digital communication. Berlin: Springer.

    Google Scholar 

  25. Elhassan, M. A., Abd-Elnaby, M., El-Dolil, S. A., & Abd El-Samie, F. E. (2019). Throughput maximization for multimedia communication with cooperative cognitive radio using adaptively controlled sensing time. Multimedia Tools and Applications, 78(24), 34999–35025.

    Article  Google Scholar 

  26. Jakoubek, R. R., Zuber, E. O., & Patel, D. P. (2011). Software radio system and method. U.S. Patent No. 7,885,409.

  27. Maleki, S., Chepuri, S. P., & Leus, G. (2011). Energy and throughput efficient strategies for cooperative spectrum sensing in cognitive radios. In 2011 IEEE 12th international workshop on signal processing advances in wireless communications (pp. 71–75). IEEE.

  28. Peh, E., & Liang, Y. C. (2007). Optimization for cooperative sensing in cognitive radio networks. In 2007 IEEE wireless communications and networking conference (pp. 27–32). IEEE.

  29. Ashiba, H. I., Mansour, H. M., Ahmed, H. M., El-Kordy, M. F., Dessouky, M. I., Zahran, O., & El-Samie, F. E. A. (2019). Enhancement of IR images using histogram processing and the undecimated additive wavelet transform. Multimedia Tools and Applications, 78(9), 11277–11290.

    Article  Google Scholar 

  30. Petrovic, V. S., & Xydeas, C. S. (2004). Gradient-based multiresolution image fusion. IEEE Transactions on Image Processing, 13(2), 228–237.

    Article  Google Scholar 

  31. Daubechies, I. (1996). Where do wavelets come from?—A personal point of view. Proceedings of the IEEE, 84(4), 510–513.

    Article  Google Scholar 

  32. Ashiba, H. I., et al. (2008). Homomorphic enhancement of infrared images using the additive wavelet transform. Progress in Electromagnetics Research, 1, 123–130.

    Article  Google Scholar 

  33. Prochazka, A., Uhlir, J., Rayner, P. J. W., & Kingsbury, N. J. (1998). Signal analysis and prediction. Cambridge: Birkhauser Inc.

    Book  Google Scholar 

  34. Vrcelj, B., & Vaidyanathan, P. P. (2001). Efficient implementation of all-digital interpolation. IEEE Transactions on Image Processing, 10(11), 1639–1646.

    Article  Google Scholar 

  35. Thevenaz, P., Blu, T., & Unser, M. (2000). Interpolation revisited . IEEE Transactions on Medical Imaging, 19(7), 739–758.

    Article  Google Scholar 

  36. Blu, T., Thcvenaz, P., & Unser, M. (2001). MOMS: Maximal-order interpolation of minimal support. IEEE Transactions on Image Processing, 10(7), 1069–1080.

    Article  Google Scholar 

  37. Cohen, A., & Kovacevic, J. (1996). Wavelets: The mathematical background. Proceedings of the IEEE, 84(4), 514–522.

    Article  Google Scholar 

  38. Walker, J. S. (1999). A primer on wavelets and their scientific applications. Boca Raton: CRC Press LLC.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Ashiba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, N., Ashiba, H.I., El-Dolil, S.A. et al. Hybrid Detection for Cooperative Cognitive Radio Using AWT and HDWT. Wireless Pers Commun 118, 2151–2174 (2021). https://doi.org/10.1007/s11277-021-08117-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08117-8

Keywords

Navigation