Skip to main content
Log in

Study on QoS Management for Video Streaming in Vehicular Ad Hoc Network (VANET)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular Ad Hoc Network (VANET) is a particular type of MANET providing various wireless communications such as infrastructure communications and inter-vehicle communications. Recently, VANET networks are attracting ample attention from the scientific and business community. In VANET networks, the textual data is almost negligible compared to the multimedia data that is interactive and expressive. Quality management of video streaming over the VANET environment is a complex task, given the specific constraints of multimedia data in terms of Quality of Service (QoS), security, system performance, and a random number of vehicles. This article discusses existing video streaming techniques in VANET networks by highlighting different QoS and Quality of Experience (QoE) metrics related to video streaming. A comparative study of video streaming models of literature on VANET is presented, taking into consideration several QoS and QoE metrics. Finally, the trends in video broadcasting in VANET networks are identified as future research directions. We believe that our comprehensive survey will enhance the understanding of video streaming tasks in the VANET environment and provide useful knowledge about the research trends and directions. VANET environment and provide useful knowledge about the research trends and directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abir, M., Tarek, M., Bechir, A., & Salem, N. (2017). Survey on QoS aware Broadcasting in Vehicular ad hoc Networks. Telecommunication Systems Journal, 66, 253–281.

    Google Scholar 

  2. VINEETH, N., GURUPRASAD, H. A, (2013). Survey on the techniques enhancing video streaming in VANETs. Int. J. Comput. Network. Wirel. Mob. Commun.(IJCNWMC), ISSN, p. 2250–1568.

  3. Sasan, A., Erfani, S. (2005). Mobile ad-hoc networks with QoS and RSVP provisioning. In: Canadian conference on electrical and computer engineering (pp. 2069–2072). 10.1109/ CCECE. 2005. 1557394.

  4. Singh, V. K., Kushwaha, D. S., Sujane, R., & Taram, M. (2015). Survey of quality of services to improved performance of routing in MANET. International Journal of Computer Science and Information Technologies (IJCSIT), 06(05), 4599–4604.

    Google Scholar 

  5. Cunha, F., Villas, L., & Boukerche, A. (2016). Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Networks, 44, 90–103.

    Google Scholar 

  6. Huang, S., Izquierdo, E., & Hao, P. (2016). Bandwidth-Efficient Packet Scheduling for Live Streaming With Network Coding. IEEE Transactions on Multimedia, 18, 1–1.

    Google Scholar 

  7. Song, C., Tan, G., & Yu, C. (2017). An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks. Sensors, 17(10), 2293.

    Google Scholar 

  8. GHAFOOR, K. Z. . (2016). Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives. ARO-The Scientific Journal of Koya University, 4(2), 25–36.

    Google Scholar 

  9. ALIYU, A., ABDULLAH, A. H., KAIWARTYA, O., et al., (2017). Multi-Path video streaming in vehicular communication: Approaches and challenges. In: Student Project Conference (ICT-ISPC), 2017 6th ICT International. IEEE, pp. 1–4.

  10. Aliyu, A., Abdullah, A. H., Kaiwartya, O., et al. (2018). Towards video streaming in IoT Environments: Vehicular communication perspective. Computer Communications, 118, 93–119.

    Google Scholar 

  11. Omar, A. H., Mohd, N. M. K., Muamer, N. M., & Waleed, A. H. (2017). Issues and Challenges of Video Dissemination in VANET and Routing Protocol. Journal of Engineering and Applied Sciences, 12, 9266–9277.

    Google Scholar 

  12. Quadros, C., Santos, A., Gerla, M., & Cerqueira, E. (2016). QoE-driven dissemination of real-time videos over vehicular networks. Computer Communications, 91, 133–147.

    Google Scholar 

  13. Vinel, A., Belyaev, E., Egiazarian, K., & Koucheryavy, Y. (2012). An overtaking assistance system based on joint beaconing and real-time video transmission. IEEE Transactions on Vehicular Technology, 61(5), 2319–2329.

    Google Scholar 

  14. Toledo-Moreo, R., Santa, J. and Zamora-Izquierdo, M., (2009). A Cooperative Overtaking Assistance System, 3rd IROS Workshop: Planning, Perception, and Navigation for Intelligent Vehicles, pp. 50–56

  15. Ruder, M., Enkelmann, W. and Garnitz, R., (2002). Highway lane change assistant. In: Intelligent Vehicle Symposium, 2002. IEEE, 2002, pp. 240–244 vol.1. https://doi.org/10.1109/IVS.2002.1187958

  16. Ruder, M., Enkelmann, W. and Garnitz, R., (2002). Highway lane change assistant. In: Intelligent Vehicle Symposium, 2002. IEEE, pp. 240–244 vol.1.

  17. Becher, D., et al, (2014). Vehicle and pedestrian collision prevention system based on smart video surveillance and C2I communication. In: Intelligent Transportation Systems (ITSC), IEEE 17th International Conference on. IEEE, 2014. p. 3088–3093.

  18. Toufik, A., & Ismail, D. (2006). Delivering Audiovisual Content with MPEG-21-Enabled Cross-Layer QoS Adaptation. Journal of Zhejiang University Science A, 7(5), 784–793.

    MATH  Google Scholar 

  19. Wang, C., Lin, D., and Lin, P., “Cross-layer Analysis and Design for Multimedia Services in IEEE 802.11 WLANs”, In: Proceedings of the international Conference on Mobile Technology, Applications, and Systems, Taiwan, pp.1‐6, Sept 2008.

  20. Vijay, T., & Iyer, S. (2004). Cross Layer Design Optimizations in Wireless Protocol Stacks. Computer Communications (Elsevier) Journal, 27(8), 720–724.

    Google Scholar 

  21. D Pradas, A Bouabdallah, J Lacan, M.A. Vazquez Castro and M.Bousquet, “Cross-layer Optimization of Unequal Protected Layered Video over Hierarchical Modulation. In: Global Telecommunications Conference (GLOBECOM 2009. IEEE), pp.1–6, Nov. 2009.

  22. G.A. Di Caro, S. Giordano, M. Kulig, D. Lenzarini, A. Puiatti and F.Schwitter, “A Cross-Layering and Autonomic Approach to Optimized Seamless Handover. In: Proceedings of the 3rd Annual Conference on Wireless on demand Network Systems and Services (WONS), Jan. 2006.

  23. A.M. Safwat, “A Novel Framework for Cross‐Layer Design in Wireless Ad hoc and Sensor Networks. In: Globecom 2004 Workshops, IEEE Communications Society, pp.130–5, 2004.

  24. Ahmad, I. and Habibi, D., (2010). High utility video surveillance system on public transport using WiMAX technology In: 2010 IEEE Wireless Communication and Networking Conference, Sydney, SW, 2010, pp. 1–5.

  25. H.-T. Zhao, A.-Q. Du, H.-B. Zhu, D.-P. Li, and N.-J. Liu. “Research on Q-Learning based Channel Access Control Algorithm for Internet of Vehicles. In: 2016 International Computer Symposium (ICS), pp. 491–496, New York, NY USA, 2016.

  26. An, C. Wu, T. Yoshinaga, X.-F. Chen, and Y.-S. Ji. “A Context-Aware Edge-Based VANET Communication Scheme for ITS.” Sensors, 18(7), Jul 2018.

  27. W.-K. Lai, M.-T. Lin, and Y.-H. Yang. 2015 A Machine Learning System for Routing Decision-Making in Urban Vehicular Ad Hoc Networks.” International Journal Of Distributed Sensor Networks.

  28. Bagherlou, H., & Ghaffari, A. (Jun 2018). A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. Journal of Super Computing, 74(6), 2528–2552.

    Google Scholar 

  29. L. P. Portugal-Poma, C. A. C. Marcondes, H. Senger, and L. Arantes. “Applying Machine Learning to Reduce Overhead in DTN Vehicular Networks.” In: 2014 Brazilian Symposium on Computer Networks and Distributed Systems (SBRC), pp. 94–102, New York, NY USA, 2014.

  30. Taherkhani, N., & Pierre, S. (Nov 2016). Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm. IEEE Transactions On Intelligent Transportation Systems, 17(11), 3275–3285.

    Google Scholar 

  31. Chen, C., Xiang, H.-Y., Qiu, T., Wang, C., Zhou, Y., & Chang, V. (Jul 2018). A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. Journal Of Parallel And Distributed Computing, 117, 192–204.

    Google Scholar 

  32. Kang, X., Song, B., Guo, J., Du, X.-J., & Guizani, M. (2018). Attention-mechanism-based tracking method for intelligent Internet of vehicles. International Journal of Distributed Sensor Networks, 14(10), 1–16.

    Google Scholar 

  33. Wu, C., Yoshinaga, T., Ji, Y.-S., Murase, T., & Zhang, Y. (Jul 2017). A Reinforcement Learning-Based Data Storage Scheme for Vehicular Ad Hoc Networks. IEEE Transactions On Vehicular Technology, 66(7), 6336–6348.

    Google Scholar 

  34. Jeong, Y.-N., Son, S., Jeong, E., & Lee, B. (2018). An Integrated Self-Diagnosis System for an Autonomous Vehicle Based on an IoT Gateway and Deep Learning. Applied Sciences, 8, 1–24.

    Google Scholar 

  35. Zhioua, G. M., Tabbane, N., Labiod, H., & Tabbane, S. (2015). A Fuzzy Multi-Metric QoS-Balancing Gateway Selection Algorithm in a Clustered VANET to LTE Advanced Hybrid Cellular Network. IEEE Transactions On Vehicular Technology, 64(2), 804–817.

    Google Scholar 

  36. A. Hassan, M. H. Ahmed, and M. A. Rahman. “Adaptive Beaconing System based on Fuzzy Logic Approach for Vehicular Network.” In: 2013 IEEE 24th International Symposium On Personal, Indoor, And Mobile Radio Communications (PIMRC), pp. 2581–2585, New York, NY USA, 2013

  37. Soleymani, S. A., Abdullah, A. H., Anisi, M. H., Altameem, A., Hasan, W. H., Goudarzi, S., et al. (2007). BRAIN-F: Beacon Rate Adaption Based on Fuzzy Logic in Vehicular Ad Hoc Network. International Journal of Fuzzy Systems, 19(2), 301–315.

    Google Scholar 

  38. Fatemidokht, H., & Rafsanjani, M. K. (Jun 2018). F-Ant: an effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks. Neural Computing & Applications, 29(11), 1127–1137.

    Google Scholar 

  39. A David2015 he technology of video and audio streaming. Focal Press, ACM Digital Library, ISBN:1138169080 9781138169081.

  40. Ghafoor, K., Abu Bakar, K., (2010). Inter-vehicle communication protocols for multimedia transmission. In: International Multiconference of Engineering and Computer Scientists. Vol. 2, IMECS 2010, March 17–19, 2010, Hong Kong.

  41. Ansam, E., Mustapha, M., Jamaa, B., Mohammed, E., (2010). Performance analysis of Streaming Video over Vehicular ad-hoc. In: 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV).

  42. Tim, S., & Christina, H. (2004). End-to-End QoS Network Design: Quality of Service in LANs, WANs, and VPNs (Networking Technology). Cisco Press: Cisco Press.

    Google Scholar 

  43. Richardson, I. E. (2004). H. 264 and MPEG-4 video compression: video coding for next-generation multimedia. New York: Wiley.

    Google Scholar 

  44. Yuste, L. B., Boronat, F., Montagud, M., & Melvin, H. (2016). Understanding Timelines Within MPEG Standards. IEEE Communications Surveys & Tutorials., 18, 368–400.

    Google Scholar 

  45. Wiegand, T., Sullivan, G., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions On Circuits And Systems For Video Technology., 13, 560–576.

    Google Scholar 

  46. Sullivan, G., Ohm, J., Han, W., & Wiegand, T. (2012). Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions On Circuits And Systems For Video Technology, 22, 1649–1668.

    Google Scholar 

  47. Xu, Y., Zhou, H., Wang, X., & Zhao, B. (2015, October). Resource allocation for scalable video streaming in highway VANET. In: 2015 International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1–5). IEEE.

  48. An, R., Liu, Z., Zhou, H., & Ji, Y. (2016). Resource allocation and layer selection for scalable video streaming over highway vehicular networks. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 99(11), 1909–1917.

    Google Scholar 

  49. Zhou, H., Wang, X., Liu, Z., Ji, Y., & Yamada, S. (2018). Resource allocation for SVC streaming over cooperative vehicular networks. IEEE Transactions on Vehicular Technology, 67(9), 7924–7936.

    Google Scholar 

  50. Noor-A-Rahim, M., Liu, Z., Lee, H., Ali, G. M. N., Pesch, D., & Xiao, P. (2020). A survey on resource allocation in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 1–21.

  51. Torres, A., Pinol, P. , Calafate, C., Cano, J., Manzoni, P., (2014). Evaluating H.265 real-time video flooding quality in highway V2V environments. In: IEEE Wireless Communications And Networking Conference (WCNC), pp. 2716–2721.

  52. Pinol, P., Torres, A., Lopez, O., Martinez, M., & Malumbres, M. (2013). Evaluating HEVC video delivery in VANET scenarios. IFIP Wireless Days (WD), 2013, 1–6.

    Google Scholar 

  53. Vineeth, N., Guruprasad, H., (2015). Performance analysis of network coded video streams in VANETs based on mobility models. In: 2015 IEEE International Advance Computing Conference (IACC), pp. 170–175.

  54. Park, J. S., Lee, U., Oh, S. Y., Gerla, M., Lun, D., (2006). Emergency Related Video Streaming in VANETs using Network Coding. In: Proceeding of the 3rd International Workshop on Vehicular Ad hoc Networks, pp. 102–103, Los Angeles, USA.

  55. Qadri, N. N., Fleury, M., Altaf, M., & Ghanbari, M. (2010). Multi-source video streaming in a wireless vehicular ad hoc network. IET on Communications, 4(11), 1300–1311.

    Google Scholar 

  56. Aliyu, A., Abdullah, A. H., Aslam, N., et al. (2018). Interference-aware Multipath Video Streaming in Vehicular Environments. IEEE Access, 6, 47610–47626.

    Google Scholar 

  57. Claypool, M., Zhu, Y., (2003). Using interleaving to ameliorate the effects of packet loss in a video stream. In: 23rd International Conference on Distributed Computing Systems Workshops, pp. 508–513.

  58. Toutouh, J. et Alba, E. (2011 ). An efficient routing protocol for green communications in vehicular ad-hoc networks. In: Dans Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO '11 , 719–726., ew York, NY, USA. ACM.

  59. Feng, W. et Elmirghani, J. M. H. (2009). Green ict : Energy efficiency in a motorway model. In: Dans 2009 Third International Conference on Next Generation Mobile Applications, Services and Technologies, 389- 394.

  60. Zou, F. , Zhong, J., Wu, W. , Du, D.-Z. et Lee, J. (2011 ). Energy-efficient roadside unit scheduling for maintaining connectivity in vehicle ad-hoc network. In: Dans Proceedings of the 5th International Conference on Ubiquitous Info rmation Management and Communication, ICUIMC '11, 64 :1–64 :8., New York, Y, USA. ACM.

  61. Srouji, M. S., Wang, Z., Henkel, J., (2011). RDTS: A reliable erasure-coding based data transfer scheme for wireless sensor networks. In: IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS), 2011, pp. 481–488

  62. Nafaa, A., Taleb, T., & Murphy, L. (2008). Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, 46, 72–79.

    Google Scholar 

  63. Immich, R., Cerqueira, E., and Curado, M., (2015). Shielding video streaming against packet losses over VANETS. Wireless Networks, 22, 2563–2577.

    Google Scholar 

  64. Immich, R., Cerqueira, E., Curado, M., (2016). Towards a QoE-driven mechanism for improved H.265 video delivery. In: 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1–8.

  65. Xie, H., Boukerche, A., & Loureiro, A. (2016). MERVS: A Novel Multichannel Error Recovery Video Streaming Protocol for Vehicle Ad Hoc Networks. IEEE Transactions On Vehicular Technology., 65, 923–935.

    Google Scholar 

  66. Xie, H., & boukerche A, AAF Loureiro, . (2015). A multipath video streaming solution for vehicular networks with link disjoint and node-disjoint. IEEE Transactions on Parallel and Distributed Systems, 26(12), 3223–3235.

    Google Scholar 

  67. Zaidi, S., Bitam, S., & Mellouk, A. (2018). Hybrid error recovery protocol for video streaming. in vehicle ad hoc networks. Vehicular Communications., 12, 110–126.

    Google Scholar 

  68. Tsai, M., Shieh, C., Ke, C., & Deng, D. (2009). Sub-packet forward error correction mechanism for video streaming over wireless networks. Multimedia Tools And Applications., 47, 49–69.

    Google Scholar 

  69. Rezende, C., Mammeri, A., Boukerche, A., Loureiro. A.F. (2014). Receiver-based video dissemination solution for vehicular networks with content transmissions decoupled from relay node selection, Ad Hoc Networks, 17, 1–17.

    Google Scholar 

  70. Quadros, C., Cerqueira, E., Santos, A., Lim, J., Gerla, M., (2015). Beacon-less video streaming management for VANETs based on QoE and link-quality. In: IFIP/IEEE International Symposium On Integrated Network Management (IM), pp. 191–198.

  71. Soldo, F., Casetti, C., Chiasserini, C., & Chaparro, P. A. (2011). Video streaming distribution in VANETs. IEEE Transactions on Parallel and Distributed Systems, 22(7), 1085–1091.

    Google Scholar 

  72. Torres, A., Calafate, C., Cano, J., Manzoni, P., & Ji, Y. (2015). Evaluation of flooding schemes for real-time video transmission in VANETs. Ad Hoc Networks, 24, 3–20.

    Google Scholar 

  73. Fei, X., Hua, K.A., Wenjing, W., Ho, Y.H., (2007). Performance study of live video streaming over highway vehicular ad hoc networks. In: Vehicular Technology Conference, VTC-2007 Fall. IEEE 66th, pp. 2121–2125.

  74. Rezende C., et al., (2012).Virtus: A resilient location-aware video unicast scheme for vehicular networks. In: Communications (ICC), IEEE International Conference on. IEEE, 2012. pp. 698–702.

  75. Rezende, C., et al. (2015). A reactive and scalable unicast solution for video streaming over VANETs. IEEE Transactions on Computers, 64(3), 614–626.

    MathSciNet  Google Scholar 

  76. E. Yaacoub, F. Filali, and A. Abu-Dayya, “SVC video streaming over cooperative LTE/802.11p vehicle-to-infrastructure communications. In: Proc. IEEE CIT, 2013, pp. 1–5.

  77. Bonuccelli, M.A., Giunta, G., Lonetti, F., and Martelli F., (2007). Real-time video transmission in vehicular networks. In: 2007 Mobile Networking for Vehicular Environments, pp. 115 –120.

  78. Asefi, M., Mark, J., & Shen, X. (2012). A Mobility-Aware and Quality-Driven Retransmission Limit Adaptation Scheme for Video Streaming over VANETs. IEEE Transactions On Wireless Communications, 11, 1817–1827.

    Google Scholar 

  79. Xing, M., & Cai, L. (2012). Adaptive video streaming with inter-vehicle relay for highway VANET scenario. IEEE International Conference On Communications (ICC), 2012, 5168–5172.

    Google Scholar 

  80. Huang, C. M., Yang, C. C., & Lin, Y. C. (2016). An adaptive video streaming system over a cooperative fleet of vehicles using the mobile bandwidth aggregation approach. IEEE Systems Journal, 10(2), 568–579.

    Google Scholar 

  81. Bellalta, B., et al., (2014). Performance evaluation of IEEE 802.11 p-enabled vehicular video surveillance system. In: IEEE Communications Letters, vol. 18(4): 708–711.

  82. Hu, M., Zhong, Z., and Chang, C.Y., (2013). A multicast scheduling approach for layered video service in vehicular ad hoc networks. In: Proc. IEEE IMIS, pp. 387–392.

  83. Sun, L., Huang, A., Shan, H., Xing, M., and Cai, L., (2014). Quality-driven adaptive video streaming for cognitive VANETs. In: Proc. IEEE VTC Fall, pp. 1–6

  84. Sun, L., Shan, H., Huang, A., et al. (2017). Channel Allocation for Adaptive Video Streaming in Vehicular Networks. IEEE Transaction Vehicular Technology, 66(1), 734–747.

    Google Scholar 

  85. Goudarzi, F., Asgari, H., & Al-Raweshidy, H. S. (2019). Traffic-Aware VANET Routing for City Environments-A Protocol Based on Ant Colony Optimization. IEEE Systems Journal, 13(1), 571–581.

    Google Scholar 

  86. Sun, G., Zhang, Y.-J., Liao, D., Yu, H.-F., Du, X.J., & Guizani, M. (2018). Bus-trajectory-based street-centric routing for message delivery in urban vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 67(8), 7550–7563.

    Google Scholar 

  87. Abbas, F., & Fan, P.-Z. (2018). Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications, 12, 66–74.

    Google Scholar 

  88. Jyothi, K., & Jackson, J. C. (2018). A Time-based Approach for Solving the Dynamic Path Problem in Vanets—an Extension of Ant Colony Optimization. Journal of Engineering Science and Technology, 13(3), 813–821.

    Google Scholar 

  89. E. Khoza, C.-L. Tu, and P. A. Owolawi. “An Ant Colony Hybrid Routing Protocol for VANET. In: 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), 2018.

  90. Zhang, X., & Zhang, X. (2017). A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad hoc networks. Ad Hoc Networks, 58, 198–204.

    Google Scholar 

  91. Zhang, W., et al. (2013). QoE-driven Cache Management for HTTP Adaptive Bit Rate Streaming Over 286 A. Benmir et al. Survey on QoE\QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks 287 Wireless Networks. IEEE Transactions on Multimedia, 15(6), 1431–1445. https://doi.org/10.1109/TMM.2013.2247583.

    Article  Google Scholar 

  92. Oche, M., et al. (2017). Multivariate Statistical Approach for Estimating QoE of Real-time Multimedia Applications in Vehicular ITS Network. Computer Communications, 104, 88–107. https://doi.org/10.1016/j.comcom.2016.12.022.

    Article  Google Scholar 

  93. Duanmu, Z., Zeng, K., Ma, K., Rehman, A., & Wang, Z. (2017). A qualityof-experience index for streaming video. IEEE Journal of Selected Topics in Signal Processing, 11(1), 154–166.

    Google Scholar 

  94. Z. Ye, R. EL-Azouzi, T. Jimenez, and Y. Xu, “Computing the quality of experience in network modeled by a markov modulated fluid model,” arXiv preprint, 2014. arXiv:1412.2600

  95. Egilmez, H., Civanlar, S., & Tekalp, A. (2013). An Optimization Framework for QoS-Enabled Adaptive Video Streaming Over OpenFlow Networks. IEEE Transactions on Multimedia, 15, 710–715. https://doi.org/10.1109/TMM.2012.2232645.

    Article  Google Scholar 

  96. Henni, D. E., Ghomari, A., & Hadjadj-Aoul, Y. (2019). A consistent QoS routing strategy for video streaming services in SDN networks. International Journal of Communication Systems, 33, 4177.

    Google Scholar 

  97. Abbas, B., Toufik, A., Abderrahim, B, ViCoV: Efficient video streaming for cognitive radio VANET s.l.: Vehicular Communications, Vol. 1, Issue 3, pp 105–122, ISSN: 2214-2016.

  98. Liang, W., Li, Z., Zhang, H., Wang, S., & Bie, R. (2014). Vehicular ad hoc networks: Architectures, research issues, methodologies, challenges, and trends. International Journal of Distributed Sensor Networks, 1, 1–11.

    Google Scholar 

  99. Maia, G., Rezende, C., Villas, L., Boukerche, A., Viana, Aquino, A., Loureiro, A., (2013). Traffic aware video dissemination over vehicular ad hoc networks. In: Proceedings of the 16Th ACM International Conference On Modeling, Analysis & Simulation Of Wireless And Mobile Systems - Mswim’13, pp. 419–426.

  100. Wang, R., Almulla, M., Rezende, C., Boukerche, A., (2014). Video streaming over vehicular networks by a multiple path solution with error correction. In: IEEE International Conference On Communications (ICC), pp. 580–585.

  101. Sofiane, Zaidi & Bitam, Salim & Mellouk, Abdelhamid. (2017). Enhanced user datagram protocol for video streaming in VANET. In: IEEE International Conference on Communications, .pp 1–6.

  102. RAZZAQ, A., MEHAOUA, A., (2010). Video transport over VANETs: Multi-stream coding with multi-path and network coding. In: Local Computer Networks (LCN), IEEE 35th Conference on. IEEE, pp. 32–39.

  103. Zaidi, S., Bitam, S., Mellouk, A., (2016). Enhanced Adaptive Sub-Packet Forward Error Correction Mechanism for Video Streaming in VANET. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6.

  104. Zaidi, S., Bitam, S., Mellouk, A., (2017). Enhanced user datagram protocol for video streaming in VANET. In: IEEE International Conference On Communications (ICC), pp. 1–6.

  105. Bucciol, P., Zechinelli-Martini, J., Vargas-Solar, G., (2009). Optimized Transmission of Loss Tolerant Information Streams for Real-Time Vehicle-to-Vehicle Communications. In: Mexican International Conference On Computer Science, pp. 142–145.

  106. Mammeri, A., Boukerche, A., & Fang, Z. (2016). Video Streaming Over Vehicular Ad Hoc Networks Using Erasure Coding. IEEE Systems Journal, 10, 785–796.

    Google Scholar 

  107. C. Rezende, M. Almulla, A. Boukerche, The use of Erasure Coding for video streaming unicast over Vehicular Ad Hoc Networks. In: 38Th Annual IEEE Conference On Local Computer Networks, 2013, pp. 715–718

  108. Naeimipoor, F., and Boukerche, A., (2014). A hybrid video dissemination protocol for vanets,” In: Communications (ICC), IEEE International Conference on, June 2014, pp. 112–117.

  109. Bradai, A., Ahmed, T., (2014). ReViV: Selective Rebroadcast Mechanism for Video Streaming over VANET. In: IEEE 79Th Vehicular Technology Conference (VTC Spring), pp. 1–6.

  110. Zhenyu, Y., Ming, L., Wenjing, L., (2010). Codeplay: Live multimedia streamingin vanets using symbol-level network coding. In: Network Protocols (ICNP). 18th IEEE International Conference on, pp. 223 –232.

  111. Zhu, X., Jingping .B, Mingfu L., Huanyu L., (2015). Adaptive video streaming uploading with moving prediction in VANETs scenarios. In: IEEE International Conference On Networking, Architecture And Storage (NAS), 2015, pp. 39–44.

  112. Wang, R., Rezende, C., Ramos, H., Pazzi, R., Boukerche, A., Loureiro, A., (2012). LIAITHON: A location-aware multipath video streaming scheme for urban vehicular networks. In: IEEE Symposium On Computers And Communications (ISCC), pp. 000436–000441.

  113. Zaimi, I., Houssaini, Z., Boushaba, A., Oumsis, M., (2016). An improved GPSR protocol to enhance the video quality transmission over vehicular ad hoc networks. In: International Conference On Wireless Networks And Mobile Communications (WINCOM), pp. 146–153.

  114. Alaya, B., Laouamer, L., & Msilini, N. (2020). Homomorphic encryption systems statement: Trends and challenges. Computer Science Review, 36, 1–14.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bechir Alaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaya, B., Khan, R., Moulahi, T. et al. Study on QoS Management for Video Streaming in Vehicular Ad Hoc Network (VANET). Wireless Pers Commun 118, 2175–2207 (2021). https://doi.org/10.1007/s11277-021-08118-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08118-7

Keywords

Navigation