Skip to main content
Log in

Extended Length and Error-Correcting-Capacity of First-Order Reed–Muller Code in Extended Length Range

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper all the parameters in the conditions of rather comparatively larger probability of the value of n, have been discussed. In this extended range \(\upmu\) < n \(\le\) \(4\upmu\), the relation between existence of vector v(S) having the lowest weight in the coset RMm + v(S), and different values of r and d, have been analyzed. The relation between the number (\(\tau\)) of vectors having lowest weight in RMm + v(S) and various values of n, r, and d have been analyzed; and the corresponding values of \(\tau\) have been found. Also, the number of vectors (t) with lowest weight d for various values of d depending upon different quantities constituting the values of n and µ, has been found, n lying in extended range. All this is aimed at analyzing and improving the error-correcting-capacity of Reed–Muller code (first-order). Efforts are made to discuss the validity of the extended length of code and error-correcting-capacity of such a code of increased length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Haykin, S., & Systems, C. (2001). Communication systems (Eighth Reprint). New Delhi: Willey.

    Google Scholar 

  2. Haykin, S. (1988). Digital communications. Wiley. ISBN: 978-81-265-0824-2, authorised reprint by Willey India (P) Ltd., New Delhi, 1988.

  3. Singh, R. P., & Sapre, S. D. (2008). Communication systems (analog and digital). New Delhi: Tata McGraw-Hill Publishing Company Limited.

    Google Scholar 

  4. Hartley, R. V. L. (1928). Transmission of information. Bell System Technical Journal, 7(3), 535–563.

    Article  Google Scholar 

  5. Fano, R. M. (1949). The transmission of information. Technical Report 65, 1949, Rept. 149, 1950, Mass. Inst. Technol., Research Lab. Electronics, 1949, 1950.

  6. Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  Google Scholar 

  7. Fire, P. (1959). A class of multiple-error-correcting binary codes for non-independent errors. Thesis/Dissertation: eBook, Department of Electrical Engineering, Stanford University.

  8. https://en.wikipedia.org/wiki/Artificial_intelligence.

  9. Reza, F. M. (1961). An introduction to information theory. New York: McGraw-Hill.

    Google Scholar 

  10. Hill, R. (1986). A first course in coding theory. Oxford: Oxford University Press.

    MATH  Google Scholar 

  11. Roman, S. (1992). Coding and information theory. New York: Springer.

    MATH  Google Scholar 

  12. Ling, S., & Xing, C. (2004). Coding theory a first course. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  13. Bose, R., & Theory, I. (2008). Coding and cryptography. New Delhi: Tata McGraw-Hill Publishing Company Limited.

    Google Scholar 

  14. van Lint, J. H. (1998). Introduction to coding theory (3rd ed.). Berlin: Springer.

    MATH  Google Scholar 

  15. Firmanto, W. T., & Aaron Gulliver, T. (1997). Code combining of Reed–Muller codes in an indoor wireless environment. Wireless Personal Communications, 6, 359–371.

    Article  Google Scholar 

  16. McWilliams, F. J., & Sloane, N. J. A. (1977). The theory of error-correcting codes. New York: North-Holland Publishing Company.

    Google Scholar 

  17. El Zahar, M. H., & Khairat, M. K. (1987). On the weight distribution of the coset leaders of the first-order Reed–Muller code. IEEE Transactions on Information Theory, 33(5), 744–747.

    Article  MathSciNet  Google Scholar 

  18. Helleseth, T. (1978). All binary three-error-correcting BCH codes of length 2m–1 have covering radius 5. IEEE Transactions on Information Theory, 24, 257–258.

    Article  MathSciNet  Google Scholar 

  19. Vinocha, O. P., Bhullar, J. S., & Brar, B. S. (2013). Covering radius of RM binary codes. ARPN Journal of Science and Technology (USA), 3(6), 223–233.

    Google Scholar 

  20. Helleseth, T., Klove, T., & Mykkeltvit, J. (1978). On the covering radius of binary codes. IEEE Transactions on Information Theory, 24, 627–628.

    Article  MathSciNet  Google Scholar 

  21. Rothaus, O. (1976). On Bent functions. Journal of Combinatorial Theory Series A, 20, 300–305.

    Article  MathSciNet  Google Scholar 

  22. Berlekamp, E. R., & Welch, L. R. (1972). Weight distribution of the cosets of (32, 6) Reed–Muller codes. IEEE Transactions on Information Theory, 18, 203–207.

    Article  MathSciNet  Google Scholar 

  23. Mykkeltvit, J. (1980). The covering radius of the (128, 8) Reed–Muller codes is 56. IEEE Transactions on Information Theory, 26, 359–362.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Brar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brar, B.S., Sivia, J.S. Extended Length and Error-Correcting-Capacity of First-Order Reed–Muller Code in Extended Length Range. Wireless Pers Commun 118, 2519–2537 (2021). https://doi.org/10.1007/s11277-021-08141-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08141-8

Keywords

Navigation