Skip to main content

Advertisement

Log in

Lifetime Enhancement of Sensor Networks by the Moth Flame Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Advancements in wireless communication technologies have facilitated the deployment of large-scale Wireless Sensor Networks (WSNs). Due to the constraint of associated battery power, various optimization structures have been proposed to enhance the lifetime of WSNs. In this article, the concept of supernodes is used along with Moth Flame Optimization algorithm to improve the lifetime of the heterogeneous WSNs. The Moth Flame Optimization algorithm is used to achieve the energy-efficient clustering and energy-aware routing. The performance of Moth Flame Optimization algorithm is compared with the other existing protocol, including Genetic Algorithm and Particle Swarm Optimization algorithm. The effects of varying populations of supernodes and sensor nodes on the network metrics are also analyzed here. The influence of the number of hops on the lifetime is also investigated considering two different positions of the base-station in WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., & Grassini, S. (2001). Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 67(5), 1214–1222.

    Article  Google Scholar 

  2. Li, K., Ni, W., Duan, L., Abolhasan, M., & Niu, J. (2018). Wireless power transfer and data collection in wireless sensor networks. IEEE Transactions on Vehicular Technology, 67(3), 2686–2697.

    Article  Google Scholar 

  3. Arif, M., Wang, G., & Balas, V. E. (2018). Secure VANETs: Trusted communication scheme between vehicles and infrastructure based on fog computing. Studies in Informatics and Control, 27(2), 235–246.

    Article  Google Scholar 

  4. Cao, N., Choi, S., Masazade, E., & Varshney, P. K. (2016). Sensor selection for target tracking in wireless sensor networks with uncertainty. IEEE Transactions on Signal Processing, 64(20), 5191–5204.

    Article  MathSciNet  Google Scholar 

  5. Fu, Y., Ling, Q., & Tian, Z. (2012). Distributed sensor allocation for multi-target tracking in wireless sensor networks. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3538–3553.

    Article  Google Scholar 

  6. Guo, P., Liu, X., Cao, J., & Tang, S. (2017). Lossless in-network processing and its routing design in wireless sensor networks. IEEE Transactions on Wireless Communications, 16(10), 6528–6542.

    Article  Google Scholar 

  7. Guo, W., Li, J., Chen, G., Niu, Y., & Chen, C. (2015). A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks. IEEE Transactions on Parallel and Distributed System, 26(12), 3236–3239.

    Article  Google Scholar 

  8. Wang, D., Zhang, R., Cheng, X., Quan, Z., & Yang, L. (2017). Joint power allocation and splitting (JoPAS) for SWIPT in doubly selective vehicular channels. IEEE Transactions on Green Communication and Networks, 1(4), 494–502.

    Article  Google Scholar 

  9. Luo, S., Xu, J., Lim, T. J., & Zhang, R. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communication, 63(10), 3856–3868.

    Article  Google Scholar 

  10. Masazade, E., & Kose, A. (2018). A proportional time allocation algorithm to transmit binary sensor decisions for target tracking in a wireless sensor network. IEEE Transactions on Signal Processing, 66(1), 86–100.

    Article  MathSciNet  Google Scholar 

  11. Agrawal, A., Singha, V., Jain, S., & Gupta, R. K. (2018). GCRP: Grid-cycle routing protocol for wireless sensor network with mobile sink. International Journal of Electronics and Communications, 94, 1–11.

    Article  Google Scholar 

  12. Wang, C., Guo, S., & Yang, Y. (2016). An optimization framework for mobile data collection in energy-harvesting wireless sensor networks. IEEE Transactions on Mobile Computing, 15(12), 2969–2986.

    Article  Google Scholar 

  13. He, Y., He, X., & Wang, T. (2018). Neural network optimization for energy-optimal cooperative computing in wireless communication system. International Journal of Electronics and Communications, 93, 216–223.

    Article  Google Scholar 

  14. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless micro-sensor networks. IEEE Transactions on Wireless and Communications., 1(4), 660–670.

    Article  Google Scholar 

  15. Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Radio Communications., 43(3), 8–13.

    Article  Google Scholar 

  16. Villas, L. A., Boukerche, A., Ramos, H. S., Oliveira, H. A. B. F., Araujo, R. B., & Loureiro, F. A. A. (2012). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on comput., 62(4), 676–689.

    Article  MathSciNet  Google Scholar 

  17. Xie, D., Zhou, Q., You, X., Li, B., & Yuan, X. (2013). A novel energy-efficient cluster formation strategy: From the perspective of cluster members. IEEE Communications Letters, 17(11), 2044–2047.

    Article  Google Scholar 

  18. Yildiz, H. U., Ciftler, B. S., Tavli, B., Bicakci, K., & Incebacak, D. (2018). The impact of incomplete secure connectivity on the lifetime of wireless sensor networks. IEEE Systems Journal, 12(1), 1042–1046.

    Article  Google Scholar 

  19. Mekikis, P. V., Kartsakli, E., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2018). Connectivity analysis in clustered wireless sensor networks powered by solar energy. IEEE Transactions on Wireless Communications, 17(4), 2389–2401.

    Article  Google Scholar 

  20. Mridula, K. M., & Ameer, P. M. (2018). Three-dimensional sensor network connectivity considering border effects and channel randomness with application to underwater networks. IET Communications, 12(8), 994–1002.

    Article  Google Scholar 

  21. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  22. Chand, K. K., Bharati, P. V. & Ramanjaneyulu, B. S. (2012). Optimized energy efficient routing protocol for life-time improvement in wireless sensor networks. IEEE International Conference on Advances in Engineering, Science and Management (ICAESM -2012), 345–349.

  23. Parvin, R., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensor Journal, 15(8), 4264–4274.

    Article  Google Scholar 

  24. Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Piscataway, 1942–1948.

  25. Rashedi, E., Nezamabadi-pour, H. & Saryazdi, S. (2009). GSA: A gravitational search algorithm information sciences, 179(13), 2232–2248.

  26. Britto, P. X., & Selvan, S. (2019). A hybrid soft computing: SGP clustering methodology for enhancing network lifetime in wireless multimedia sensor networks. Soft Computing, 23(8), 2597–2609.

    Article  Google Scholar 

  27. Fradj, A. B., Anane, R., & Bouallegue, R. (2019). Opportunistic routing protocols in wireless sensor networks. Wireless Personal Communications, 104(3), 921–933.

    Article  Google Scholar 

  28. Anandh, S. J., & Baburaj, E. (2020). Energy efficient routing technique for wireless sensor networks using ant-colony optimization. Wireless Personal Communications, 114(4), 3419–3433.

    Article  Google Scholar 

  29. Mirjalili, S. (2015). Moth-Flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Article  Google Scholar 

  30. Goldberg, D. E. (1989). Genetic algorithm in search, optimization and machine learning. New York: Addison.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pandey.

Ethics declarations

Conflicts of interest

All authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Rajan, A., Nandi, A. et al. Lifetime Enhancement of Sensor Networks by the Moth Flame Optimization. Wireless Pers Commun 118, 2807–2820 (2021). https://doi.org/10.1007/s11277-021-08156-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08156-1

Keywords

Navigation