Skip to main content
Log in

A Random Sensitive Area Based Privacy Preservation Algorithm for Location-Based Service

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In general, generalization is a common strategy used for preserving the user’s privacy in location-based service (LBS). In this strategy, at least k−1 anonymous users are selected to generalize the real location. However, in some special areas, there will be too many anonymous users to be selected in a limited space, and the real location can be correlated with the specified area and violates the privacy. Therefore, in this paper, in order to cope with problem mentioned above, a random sensitive area based privacy preservation algorithm is proposed. In this algorithm, before selecting anonymous users, several random sensitive areas are selected. Then based on the selected areas, anonymous users are selected to generalize the real location. With these operations, the real location is not only generalized by anonymous users but also generalized by sensitive areas with different types, so the adversary will be even more difficult to identify the real location. At last, security analysis as well as simulation experiments are given to further demonstrate the superiority of algorithm proposed in the level of privacy preservation and the capability of execution efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, L., Li, J., Yang, S., & Wang, B. (2017). Privacy preserving in cloud environment for obstructed shortest path query. Wireless Personal Communications, 96(2), 2305–2322.

    Article  Google Scholar 

  2. Furini, M., Mirri, S., Montangero, M., & Prandi, C. (2020). Privacy perception when using smartphone applications. Mobile Networks & Applications, 25(3), 1055–1061.

    Article  Google Scholar 

  3. Sun, Y., Zhang, L., Li, J., & Zhang, Z. (2020). A new grid partitioning technology for location privacy protection. Turkish Journal of Electrical Engineering and Computer Sciences, 28(6), 3438–3455.

    Google Scholar 

  4. Zhang, L., Yang, S., Li, J., & Yu, L. (2018). A particle swarm optimization clustering-based attribute generalization privacy protection scheme. Journal of Circuits, Systems and Computers, 27(11), 641–654.

    Article  Google Scholar 

  5. Zhang, S., Li, X., Tan, Z., Peng, T., & Wang, G. (2019). A caching and spatial K-anonymity driven privacy enhancement scheme in continuous location-based services. Future Generation Computer Systems, 94, 40–50.

    Article  Google Scholar 

  6. Gruteser, M., & Grunwald, D. (2003). Anonymous usage of location-based services through spatial and temporal cloaking. pp. 31–42.

  7. Zou, S. H., Xi, J. W., Wang, H. G., & Xu, G. A. (2020). CrowdBLPS: A blockchain-based location-privacy-preserving mobile crowdsensing system. IEEE Transactions on Industrial Informatics, 16(6), 4206–4218.

    Article  Google Scholar 

  8. Yang, M., Zhu, T., Liang, K., & Zhou, W. (2019). A blockchain-based location privacy-preserving crowdsensing system. Future Generation Computer Systems-The International Journal of Escience, 94, 408–418.

    Article  Google Scholar 

  9. Zhang, S. B., Mao, X. J., Choo, K. K. R., Peng, T., & Wang, G. J. (2020). A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services. Information Sciences, 527, 406–419.

    Article  Google Scholar 

  10. Peng, T., Liu, Q., Meng, D. C., & Wang, G. J. (2017). Collaborative trajectory privacy preserving scheme in location-based services. Information Sciences, 387(2017), 165–179.

    Article  Google Scholar 

  11. Kang, J., Steiert, D., Lin, D., & Fu, Y. J. (2020). MoveWithMe: Location privacy preservation for smartphone users. IEEE Transactions on Information Forensics and Security, 15, 711–724.

    Article  Google Scholar 

  12. Shen, H., Zhang, M. W., Wang, H., Guo, F. C., & Susilo, W. (2020). A lightweight privacy-preserving fair meeting location determination scheme. IEEE Internet of Things Journal, 7(4), 3083–3093.

    Article  Google Scholar 

  13. Lei, Z., Lili, H., Desheng, L., Jing, L., Qingfeng, J., & Qi, Y. (2019). An attribute generalization mix-zone without privacy leakage. IEEE Access, 7(1), 57088–57099.

    Article  Google Scholar 

  14. Abdelharneed, S. A., Moussa, S. M., & Khalifa, M. E. (2019). Restricted sensitive attributes-based sequential anonymization (RSA-SA) approach for privacy-preserving data stream publishing. Knowledge-Based Systems, 164, 1–20.

    Article  Google Scholar 

  15. Wang, J. B., Cai, Z. P., & Yu, J. G. (2020). Achieving personalized k-anonymity-based content privacy for autonomous vehicles in CPS. IEEE Transactions on Industrial Informatics, 16(6), 4242–4251.

    Article  Google Scholar 

  16. Zhang, L., Ma, C., Yang, S., & Zheng, X. (2017). Probability indistinguishable: A query and location correlation attack resistance scheme. Wireless Personal Communications, 97(4), 6167–6187.

    Article  Google Scholar 

  17. Bouchelagherm, S., & Omar, M. (2020). Secure and efficient pseudonymization for privacy-preserving vehicular communications in smart cities. Computers and Electrical Engineering, 82, 106557.

    Article  Google Scholar 

  18. Lai, J., Mu, Y., Guo, F., Jiang, P., & Susilo, W. (2018). Privacy-enhanced attribute-based private information retrieval. Information Sciences, 454–455(2018), 275–291.

    Article  MathSciNet  Google Scholar 

  19. Xu, C., Xie, X., Zhu, L. H., Sharif, K., Zhang, C., Du, X. J., & Guizani, M. (2020). PPLS: A privacy-preserving location-sharing scheme in mobile online social networks. Science China-Information Sciences. https://doi.org/10.1007/s11432-019-1508-6.

    Article  MathSciNet  Google Scholar 

  20. Zhang, L., Chen, M., Liu, D., He, L., Wang, C., Sun, Y., & Wang, B. (2020). A ε-sensitive indistinguishable scheme for privacy preserving. Wireless Networks, 26(07), 5013–5033.

    Article  Google Scholar 

  21. Zhang, Y. H., Li, M., Yang, D. J., Tang, J., Xue, G. L., & Xu, J. (2020). Tradeoff between location quality and privacy in crowdsensing: An optimization perspective. IEEE Internet of Things Journal, 7(4), 3535–3544.

    Article  Google Scholar 

  22. Liu, Z. S., Zhang, L., Ni, W., & Collings, I. B. (2020). Uncoordinated pseudonym changes for privacy preserving in distributed networks. IEEE Transactions on Mobile Computing, 19(6), 1465–1477.

    Article  Google Scholar 

  23. Li, W. H., Li, C., & Geng, Y. L. (2020). APS: Attribute-aware privacy-preserving scheme in location-based services. Information Sciences, 527, 460–476.

    Article  Google Scholar 

  24. Li, W., Niu, B., Cao, J., Luo, Y., & Li, H. (2020). A personalized range-sensitive privacy-preserving scheme in LBSs. Concurrency and Computation: Practice and Experience, 32(5), e5462.

    Article  Google Scholar 

  25. Talat, R., Obaidat, M. S., Muzammal, M., Sodhro, A. H., Luo, Z., & Pirbhulal, S. (2020). A decentralised approach to privacy preserving trajectory mining. Future Generation Computer Systems, 102, 382–392.

    Article  Google Scholar 

  26. Luo, B., Li, X. H., Weng, J., Guo, J. J., & Ma, J. F. (2020). Blockchain enabled trust-based location privacy protection scheme in VANET. IEEE Transactions on Vehicular Technology, 69(2), 2034–2048.

    Article  Google Scholar 

  27. Galyaev, A. A., Lysenko, P. V., & Yakhno, V. P. (2018). Optimal path planning for an object in a random search region. Automation and Remote Control, 79(11), 2080–2089.

    Article  MathSciNet  Google Scholar 

  28. Lei, Z., Chunguang, M., Songtao, Y., et al. (2017). CP-ABE based users collaborative privacy protection scheme for continuous query. Journal on Communications, 38(09), 76–85.

    Google Scholar 

  29. Niu, B., Zhu, X., Li, Q., & Chen, J. (2015). A novel attack to spatial cloaking schemes in location-based services. Future Generation Computer Systems, 2015(49), 125–132.

    Article  Google Scholar 

  30. Mingyan, X., Hua, Z., Xinsheng, J., et al. (2018). Distribution-perceptive-based spatial cloaking algorithm for location privacy in mobile peer-to-peer enviroments. Journal of software, 29(07), 1852–1862.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Scientific Research Operating Expenses of Heilongjiang Provincial University and Colleges under Grant 2020-KYYWF-0227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tian, J., Du, Y. et al. A Random Sensitive Area Based Privacy Preservation Algorithm for Location-Based Service. Wireless Pers Commun 119, 1179–1192 (2021). https://doi.org/10.1007/s11277-021-08256-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08256-y

Keywords

Navigation