Skip to main content

Advertisement

Log in

Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Industry 4.0 is a tsunami that will invade the whole world. The real challenge of the future factories requires a high degree of reliability both in machinery and equipment. Thereupon, shifting the rudder towards new trends is an inevitable obligation in this fourth industrial revolution where the maintenance system has radically changed to a new one called predictive maintenance 4.0 (PdM 4.0). This latter is used to avoid predicted problems of machines and increase their lifespan taking into account that if machines have not any predicted problem, they will never be checked. However, in order to get successful prediction of any kind of problems, minimizing energy and resources consumption along with saving costs, this PdM 4.0 needs many new emerging technologies such as the internet of things infrastructure, collection and distribution of data from different smart sensors, analyzing/interpreting a huge amount of data using machine/deep learning…etc. This paper is devoted to present the industry 4.0 and its specific technologies used to ameliorate the existing predictive maintenance strategy. An example is given via a web platform to get a clear idea of how PdM 4.0 is applied in smart factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. Batna is the main city of Batna Province which is located in north eastern of Algeria. Batna is considered as the fifth largest city in Algeria.

  2. Takt time is the rate at which you need to complete a product to meet the customer's demand.

References

  1. Basri, E. I., Abdul Razak, I., Abdul Samat, H., & Kamaruddin, S. (2017). Preventive maintenance (PM) planning: A review. Journal of Quality in Maintenance Engineering., 23(2), 114–143. https://doi.org/10.1108/JQME-04-2016-0014

    Article  Google Scholar 

  2. Bourezza, E. M., & Mousrij, A. (2021). Towards a platform to implement an intelligent and predictive maintenance in the context of industry 4.0. Advances in Intelligent Systems and Computing, 1193, 33–44.

    Article  Google Scholar 

  3. Sahal, R., Breslin, J. G., & Ali, M. I. (2020). Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Journal of Manufacturing Systems, 54, 138–151.

    Article  Google Scholar 

  4. Ruiz-Sarmiento, J.-R., Monroy, J., Moreno, F.-A., Galindo, C., Bonelo, J.-M., & Gonzalez-Jimenez, J. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87, art. no. 103289.

  5. Gutschi, C., Furian, N., Pan, J., & Vossner, S. (2019). A conceptual modeling framework for evaluating the performance of predictive maintenance for modern, real-world production systems using potentials and risks of Industry 4.0. In 4th international conference on system reliability and Safety, ICSRS 2019, art. no. 8987658 (pp. 267–274).

  6. Adu-Amankwa, K., Attia, A. K. A., Janardhanan, M. N., & Patel, I. (2019). A predictive maintenance cost model for CNC SMEs in the era of Industry 4.0. International Journal of Advanced Manufacturing Technology, 104(9–12), 3567–3587.

    Article  Google Scholar 

  7. Gulati, R., Kahn, J., & Baldwin, R. (2010). The professional's guide to maintenance and reliability terminology. Reliabilityweb.com.

  8. Alrabghi, A., & Tiwari, A. (2016). A novel approach for modelling complex maintenance systems using discrete event simulation. Reliability Engineering and System Safety., 154, 160–170.

    Article  Google Scholar 

  9. Rostow, W. W. (1988). Essays on a Half Century Ideas, Politics and Action. Boulder, London: Westview Press.

    Google Scholar 

  10. Parthasarathi, V., & Thilagavathi, G. (2011). Synthesis and characterization of zinc oxide nanoparticle and its application on fabrics for microbe resistant defence clothing. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 392–398.

    Google Scholar 

  11. Kagermann, W. W. H., Helbig, J., & Wahlster, W. (2013). High-Tech strategy 2020, Germany.

  12. Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and Industry 4.0. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2019.119790

    Article  Google Scholar 

  13. Jaskó, Sz., Holczinger, T., & Skrop, A. (2019). Industry 4.0 laboratory of the University of Pannonia Nagykanizsa Campus. In: Science in Practice (XXXIV. Kandó Conference 2018) pp. 110–119. ISBN 978-963-449-096-8.

  14. Adrienn, S., Tibor, H., Krisztián, B., Bálint, M., & Szilárd, J. (2018). Industry 4.0—Challenges in industrial artificial intelligence. In Second international scientific conference on tourism and security, December 2018.

  15. Gartner IT Glossary, n.d. Retrieved from http://www.gartner.com/it-glossary/big-data/, Accessed 27 April 2020.

  16. TechAmerica Foundation's. Federal Big Data Commission. (2012). Demystifying big data: A practical guide to transforming the business of Government. http://www.techamerica.org/Docs/fileManager.cfm?f=techamerica-bigdatareport-final.pdf.

  17. Witkowski, K. (2017). Internet of Things, Big Data, Industry 4.0—Innovative solutions in logistics and supply chains management. Procedia Engineering, 182, 763–769.

    Article  Google Scholar 

  18. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

    Article  Google Scholar 

  19. Tao, F., Qi, Q., & Liu, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  20. De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of big data based on its essential features. Library Review, 65(3), 122–135. https://doi.org/10.1108/LR-06-2015-0061

    Article  Google Scholar 

  21. Kovács, L., MatiscsáknéLizák, M., & Kolcza, G. (2004). Selection with help of data mining. Production Systems and Information Engineering, 2, 91–106.

    Google Scholar 

  22. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Amsterdam: Elsevier.

    MATH  Google Scholar 

  23. Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (1998). Data mining and knowledge discovery, data mining methods for knowledge discovery. The Springer International Series in Engineering and Computer Science, 458, 1–26. https://doi.org/10.1007/978-1-4615-5589-6_1

    Article  MATH  Google Scholar 

  24. He, J. (2009). Advances in data mining: History and future. In Third international symposium on intelligent information technology application (Vol. 1, pp. 634–636). IEEE, Shanghai, China. https://doi.org/10.1109/IITA.2009.204.

  25. Harley, O., & Ying, L. (2017). Towards Industry 4.0 utilizing data-mining techniques: A case study on quality improvement. In The 50th CIRP conference on manufacturing systems, Procedia CIRP (Vol. 63, pp. 167–172).

  26. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329.

    Google Scholar 

  27. Flavian, C., IbáñezSánchez, S., & Orús, C. (2018). The impact of virtual, augmented and mixed reality technologies on the customer experience. Journal of Business Research, 100, 547–560. https://doi.org/10.1016/j.jbusres.2018.10.050

    Article  Google Scholar 

  28. Berg, L. P., & Vance, J. M. (2016). Industry use of virtual reality in product design and manufacturing: A survey. Virtual Reality. https://doi.org/10.1007/s10055-016-0293-9

    Article  Google Scholar 

  29. Bonetti, F., Warnaby, G., & Quinn L. (2018). Augmented reality and virtual reality in physical and online retailing: A review, synthesis and research agenda. In Jung, T., & tom Dieck, M. (Eds.), Augmented reality and virtual reality (pp. 119–132). Progress in IS. Springer, Cham.

  30. Griffin, T., Giberson, J., Lee, S. H., Guttentag, D., Kandaurova, M., & Sergueeva, K. (2017). Virtual reality and implications for destination marketing. In Proceedings of the 48th annual travel and tourism research association (TTRA), international conference, Quebec City, Canada.

  31. Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark, D., & Spanlang, B. (2017). Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychological Medicine, 47(14), 2393–2400.

    Article  Google Scholar 

  32. Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423–1427.

    Article  Google Scholar 

  33. Kostov, G. Y. (2015). Fostering player collaboration within a multimodal co-located game. Master’s Thesis, University of Applied Sciences Upper Austria, Wels, Austria; p. 4.

  34. Alkhamisi, A. O., & Monowar, M. M. (2013). Rise of augmented reality: Current and future application areas. International Journal of Internet and Distributed Systems, 1, 25–34. https://doi.org/10.4236/ijids.2013.14005

    Article  Google Scholar 

  35. Damiani, L., Demartini, M., Guizzi, G., Revetria, R., & Tonelli, F. (2018). Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine, 51, 624–630.

    Article  Google Scholar 

  36. Damiani, L., Revetria, R., & Morra, E. (2020). Safety in Industry 4.0: The multi-purpose applications of augmented reality in digital factories. Advances in Science, Technology and Engineering Systems Journal, 5(2), 248–253.

    Article  Google Scholar 

  37. Kovar, J., Mouralova, K., Ksica, F., Kroupa, J., Andrs, O. & Hadas, Z. (2016).Virtual reality in context of Industry 4.0 proposed projects at Brno University of Technology. In 17th International Conference on Mechatronics-Mechatronika (ME), Prague, Czech Republic (pp. 1–7).

  38. Urbina, M., Acosta, T., Lázaro, J., Astarloa, A., & Bidarte, U. (2019). Smart sensor: SoC architecture for the industrial internet of things. IEEE Internet of Things Journal., 6(4), 6567–6577.

    Article  Google Scholar 

  39. Gervais-Ducouret, S. (2011). Next smart sensors generation (pp. 193–196). San Antonio, TX: IEEE Sensors Applications Symposium.

    Google Scholar 

  40. Aksa, K. (2017). Billiardo: A novel virtual coordinates routing protocol based on multiple sinks for wireless sensor network. Wireless Personal Communications, 94(3), 1147–1164.

    Article  Google Scholar 

  41. Sellami, C., Miranda, C., Samet, A., Bach Tobji, M. A., & Beuvron, F. (2019). On mining frequent chronicles for machine failure prediction. Journal of Intelligent Manufacturing, 31(4), 1019–1035. https://doi.org/10.1007/s10845-019-01492-x

    Article  Google Scholar 

  42. Nieuwenhuis, L. J. M., Ehrenhard, M. L., & PrauseL. . (2018). The shift to cloud computing: The impact of disruptive technology on the enterprise software business ecosystem. Technological Forecasting and Social Change, 129, 308–313.

    Article  Google Scholar 

  43. Mitra, A., O’Regan, N., & Sarpong, D. (2018). Cloud resource adaptation: A resource based perspective on value creation for corporate growth. Technological Forecasting and Social Change., 130, 28–38.

    Article  Google Scholar 

  44. Lee, J., Hossein, D., Jaskaran, S., & Vibhor, P. (2018). Industrial artificial intelligence for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23. https://doi.org/10.1016/j.mfglet.2018.09.002

    Article  Google Scholar 

  45. Abhishek, J., Manjeet, S., & Manohar, K. (2015). Introduction to artificial intelligence. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 3(5).

  46. Dhanabalan, T., & Sathish, A. (2018). Transforming Indian industries through artificial intelligence and robotics in Industry 4.0. International Journal of Mechanical Engineering and Technology (IJMET), 9(10), 835–845.

    Google Scholar 

  47. Norihiko, M., & Masaharu, A. (2017). R&D strategy for using AI and analytics to accelerate system evolution. Hitachi Review, 66(6), 64–71.

    Google Scholar 

  48. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.

    Article  MathSciNet  Google Scholar 

  49. Awad, M., & Khanna, R. (2015). Machine learning. In Efficient learning machines, theories, concepts, and applications for engineers and system designers. Apress, Berkeley, CA, pp. 1–18. https://doi.org/10.1007/978-1-4302-5990-9_1.

  50. Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019). Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50, 92–111. https://doi.org/10.1016/j.inffus.2018.10.005

    Article  Google Scholar 

  51. PD ISO/TS 15066. (2016). Robots and robotic devices—Collaborative robots. Danish Standards Foundation, Copenhagen. https://www.iso.org/standard/62996.html.

  52. ISO 10218-1/2. (2011). Robots and robotic devices—Safety requirements for industrialrobots—Part 1: Robots/Part2: Robot systems and integration. https://www.iso.org/standard/41571.html.

  53. Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., & Chryssolouris, G. (2015). Design considerations for safe human–robot collaborative workplaces. ProcediaCIrP, 37, 248–253.

    Google Scholar 

  54. Tuptuk, S. H. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 47, 93–106.

    Article  Google Scholar 

  55. Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., & Ijaz, F. (2017). Integration of RFID, Wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering, 212, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.008

    Article  Google Scholar 

  56. Wan, J., Cai, H., & Zhou, K. (2015), Industry 4.0: Enabling technologies. In Proceedings of the international conference on intelligent computing and internet of things (ICIST) (pp. 135–140). Harbin, China.

  57. Ramin, K., Jesper, W., Diego, G., & Uday, K. (2016). Maintenance analytics—The new know in maintenance. IFAC-PapersOnLine, 49(28), 214–219. https://doi.org/10.1016/j.ifacol.2016.11.037

    Article  Google Scholar 

  58. Braglia, M., Frosolini, M., & Zammori, F. (2009). Overall equipment effectiveness of a manufacturing line (OEEML): An integrated approach to assess systems performance. Journal of Manufacturing Technology Management, 20(1), 8–29.

    Article  Google Scholar 

  59. Rahmani, K., Bonab, M. P., & Naghadeh, M. K. (2011). Evaluating the overall effectiveness of production equipment and machinery. American Journal of Scientific Research, 31, 59–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Aksa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksa, K., Aitouche, S., Bentoumi, H. et al. Developing a Web Platform for the Management of the Predictive Maintenance in Smart Factories. Wireless Pers Commun 119, 1469–1497 (2021). https://doi.org/10.1007/s11277-021-08290-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08290-w

Keywords

Navigation