Skip to main content
Log in

A Secure and Verifiable Continuous Data Collection Algorithm in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Data collection is a key operation in wireless sensor networks. In view of the privacy-preserving problem of the existing data collection schemes, this paper proposes a secure and verifiable continuous data collection algorithm (SVCDC) in wireless sensor networks. Taking the temporal correlation of sensory data into consideration, SVCDC reconstructs multiple sensory data in one period, which can effectively decrease data traffic, and then by encrypting the reconstructed data, SVCDC ensures the privacy of the sensory data. In addition, in SVCDC, the “fingerprint” of sensory data is generated, aggregated and transmitted to Sink. Then, Sink extracts the “fingerprint”, which ensures the verification of the integrity and timeliness of each node’s sensory data and the detections of attack such as replaying or discarding data. Since the “fingerprint” is aggregated and much shorter than the original data, the communication cost of “fingerprint” is low. Theoretical analysis and experimental results show that SVCDC has advantages in traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lv, C., Wang, Q., Yan, W., et al. (2018). A sparsity feedback-based data gathering algorithm for wireless sensor networks. Computer Networks, 141, 145–156.

    Article  Google Scholar 

  2. Xie, H., Yan, Z., Yao, Z., et al. (2018). Data collection for security measurement in wireless sensor networks: A survey. IEEE Internet of Things Journal, 6(2), 2205–2224.

    Article  Google Scholar 

  3. Gong, J., Chang, T. H., Shen, C., et al. (2018). Flight time minimization of UAV for data collection over wireless sensor networks. IEEE Journal on Selected Areas in Communications, 36(9), 1942–1954.

    Article  Google Scholar 

  4. Chen, S., Zhang, S., Zheng, X., et al. (2019). Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. Journal of Network and Computer Applications, 129, 37–45.

    Article  Google Scholar 

  5. Zhu, T., Li, J., Gao, H., et al. (2020). Latency-efficient data collection scheduling in battery-free wireless sensor networks. ACM Transactions on Sensor Networks, 16(3), 25.

    Article  Google Scholar 

  6. Muhammad, U., Ahmad, J. M., Xiangjian, H., et al. (2020). A mobile multimedia data collection scheme for secured wireless multimedia sensor networks. IEEE Transactions on Network Science and Engineering, 7(1), 274–284.

    Article  Google Scholar 

  7. Ifzarne, S., Hafidi, I., & Idrissi, N. (2021). Secure data collection for wireless sensor network. Wireless Personal Communications, 116(1), 241–248.

    Google Scholar 

  8. Yi, K., Wan, J., Yao, L., et al. (2015). Partial matrix completion algorithm for efficient data gathering in wireless sensor networks. IEEE Communications Letters, 19(1), 54–57.

    Article  Google Scholar 

  9. Zhang, P., Wang, J., & Guo, K. (2018). Compressive sensing and random walk based data collection in wireless sensor networks. Computer Communications, 129, 43–53.

    Article  Google Scholar 

  10. Xie, K., Ning, X., Wang, X., et al. (2017). An efficient privacy-preserving compressive data gathering scheme in WSNs. Information Sciences, 390, 82–94.

    Article  Google Scholar 

  11. Lu, W., Liu, Y., & Wang, D. (2013). A distributed secure data collection scheme via chaotic compressed sensing in wireless sensor networks. Circuits, Systems, and Signal Processing, 32(3), 1363–1387.

    Article  MathSciNet  Google Scholar 

  12. He, W., Liu, X., Nguyen, H., Nahrstedt, K., & Abdelzaher, T. (2011). PDA: Privacy-preserving data aggregation for information collection. ACM Transactions on Sensor Networks, 8(1), 6.

    Article  Google Scholar 

  13. Wang, T., Qin, X., Ding, Y., et al. (2018). Privacy-preserving and energy-efficient continuous data aggregation algorithm in wireless sensor networks. Wireless Personal Communications, 98(6), 665–684.

    Article  Google Scholar 

  14. Gomathi, S., & Gopala, Krishnan C. (2020). Malicious node detection in wireless sensor networks using an efficient secure data aggregation protocol. Wireless Personal Communications, 113(5), 1775–1790.

    Article  Google Scholar 

  15. Zhou, L., Ge, C., Hu, S., et al. (2020). Energy-efficient and privacy-preserving data aggregation algorithm for wireless sensor networks. IEEE Internet of Things Journal, 7(5), 3948–3957.

    Article  Google Scholar 

  16. Li, H. J., Lin, K., & Li, K. Q. (2011). Energy-efficient and high-accuracy secure data aggregation in wireless sensor networks. Computer Communications, 34(4), 591–597.

    Article  MathSciNet  Google Scholar 

  17. Ozdemir, S., Miao, P., & Yang, X. (2015). PRDA: Polynomial regression-based privacy-preserving data aggregation for wireless sensor networks. Wireless communications and mobile computing, 15(4), 615–628.

    Article  Google Scholar 

  18. Zhong, H., Shao, L., Cui, J., et al. (2018). An efficient and secure recoverable data aggregation scheme for heterogeneous wireless sensor networks. Journal of Parallel and Distributed Computing, 111, 1–12.

    Article  Google Scholar 

  19. Liu, Y., Peng, H., Wu, Y., Zeng, J., Chen, H., Wang, K., Lai, W., & Li, C. (2018). Secure data aggregation with integrity verification in wireless sensor networks. In International conference on database systems for advanced applications (pp. 717–733). Springer.

  20. Ozdemir, S., & Xiao, Y. (2011). Integrity protecting hierarchical concealed data aggregation for wireless sensor networks. Computer Networks, 55(8), 1735–1746.

    Article  Google Scholar 

  21. Boneh, D., Goh, E. J., & Nissim, K. (2005). Evaluating 2-DNF formulas on ciphertexts. In Theory of cryptography conference (pp. 325–341). Springer.

  22. Alsuwaiyel, M. H. (2016). Algorithms: Design techniques and analysis (revised edition). World Scientific, 2016.

  23. Samuel, M. (2004). Intel lab data[OL]. http://db.csail.mit.edu/labdata/labdata.html. Accessed 20 May 2018.

  24. Min, R., & Chandrakasan, A. (2001). Energy-efficient communication for ad-hoc wireless sensor networks. In 11th Asilomar conference on IEEE (pp. 139–143).

  25. Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1997). Handbook of applied cryptography. CRC Press.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61972438, 61672039, 61572036, 61871412, 61402014); Key Research and Development Projects in Anhui Province (202004a05020002); CERNET Next Generation Internet Creative Project of China (NGII20170312, NGII20170305); Anhui Normal University Ph.D. Startup Fund (2018XJJ66); Anhui Normal University Innovation Fund (2018XJJ114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taochun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Lv, C., Jin, X. et al. A Secure and Verifiable Continuous Data Collection Algorithm in Wireless Sensor Networks. Wireless Pers Commun 119, 2265–2285 (2021). https://doi.org/10.1007/s11277-021-08330-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08330-5

Keywords