Skip to main content

Advertisement

Log in

Novel Collision Detection and Avoidance System for Midvehicle Using Offset-Based Curvilinear Motion

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent days, the manufacture of automotive vehicles is dramatically enhanced worldwide. Most vehicle crashes are due to the drive distraction on the real highway roads and traffic-density. In this proposed method, a novel collision detection and avoidance algorithm are coined for Midvehicle Collision Detection and Avoidance System (MCDAS), addressing two scenarios, namely, (a) A rear-end collision avoidance with host vehicle under no front-end vehicle condition and (b) offset-based curvilinear motion under critical conditions, while, suitable parallel parking manoeuvring also addressed using offset-based curvilinear motion. The Monte Carlo analysis of the proposed MCDAS is demonstrated using the Constant Velocity (CV) manoeuvring strategy and simulated with real-time data using the NGSIM database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Board, N.T.S. (2015, May). Special investigation report. The use of forward collision avoidance systems to prevent and mitigate rear-end crashes. Washington, DC.

  2. Petrov, P., & Nashashibi, F. (2014). Modeling and nonlinear adaptive control for autonomous vehicle overtaking. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1643–1656.

    Article  Google Scholar 

  3. González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135–1145.

    Article  Google Scholar 

  4. Han, T., Kim, Y., & Kim, K. (2014). Lane detection & localization for UGV in urban environment. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE.

  5. Van Nunen, E., Kwakkernaat, R., Ploeg, J., & Netten, B. D. (2012). Cooperative competition for future mobility. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1018–1025.

    Article  Google Scholar 

  6. Kim, J.-H., & Kum, D.-S. (2015). Threat prediction algorithm based on local path candidates and surrounding vehicle trajectory predictions for automated driving vehicles. In 2015, IEEE intelligent vehicles symposium (IV). IEEE.

  7. Kim, J., Jo, K., Lim, W., Lee, M., & Sunwoo, M. (2015). Curvilinear-coordinate-based object and situation assessment for highly automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1559–1575. https://doi.org/10.1109/TITS.2014.2369737

    Article  Google Scholar 

  8. Xiang, X., Qin, W., & Xiang, B. (2014). Research on a DSRC-based rear-end collision warning model. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1054–1065.

    Article  Google Scholar 

  9. Lin, C.-F., Juang, J.-C., & Li, K.-R. (2014). Active collision avoidance system for steering control of autonomous vehicles. IET Intelligent Transport Systems, 8(6), 550–557.

    Article  Google Scholar 

  10. Parate, S.M., Seshu Babu, V., & Swarup, S. (2014). Night time rear end collision avoidance system using SMPTE-C standard and VWVF. In 2014 IEEE international conference on vehicular electronics and safety. IEEE.

  11. Park, M.-H., & Joo, Y.-I. (2017). Adaptive beaconing for effective inter-vehicle collision avoidance system. Wireless Personal Communications, 96(2), 1741–1751.

    Article  Google Scholar 

  12. Kumar, S., & Tiwari, U. K. (2018). Energy efficient target tracking with collision avoidance in WSNs. Wireless Personal Communications, 103(3), 2515–2528.

    Article  Google Scholar 

  13. Gawas, M. A., & Govekar, S. (2020). State-of-art and open issues of cross-layer design and QOS routing in internet of vehicles. Wireless Personal Communications, 2020, 1–37.

    Google Scholar 

  14. Anbalagan, R., Zahir Hussain, M., Jayabalakrishnan, D., Naga Muruga, D. B., & Prabhahar, M. (2020). Vehicle to vehicle data transfer and communication using LI-FI technology. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.08.786

    Article  Google Scholar 

  15. Zhang, H., & Lu, X. (2020). Vehicle communication network in intelligent transportation system based on internet of things. Computer Communications, 160, 799–806.

    Article  Google Scholar 

  16. Rezaei, M., Terauchi, M., & Klette, R. (2015). Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2723–2743.

    Article  Google Scholar 

  17. Zhang, S., Simkani, M., & Zadeh, M. H. (2011). Automatic vehicle parallel parking design using fifth degree polynomial path planning. In 2011 IEEE vehicular technology conference (VTC Fall). IEEE.

  18. Vorobieva, H., Minoiu-Enache, N., Glaser, S., & Mammar, S. (2013). Geometric continuous-curvature path planning for automatic parallel parking. In 2013 10th IEEE international conference on networking, sensing and control (ICNSC), Evry (pp 418–423). https://doi.org/10.1109/ICNSC.2013.6548775.

  19. Fu, M., Song, W., Yi, Y., & Wang, M. (2015). Path planning and decision making for autonomous vehicle in urban environment. In 2015 IEEE 18th international conference on intelligent transportation systems, Las Palmas (pp. 686–692). https://doi.org/10.1109/ITSC.2015.117.

  20. Narayanan, P., Sengan, S., Pudhupalayam Marimuthu, B., et al. (2021). Analysis and design of fuzzy-based manoeuvring model for mid-vehicle collision avoidance system. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02737-x

    Article  Google Scholar 

  21. Ganesh Kumar, K., & Sengan, S. (2020). Improved network traffic by attacking denial of service to protect resource using Z-test based 4-Tier Geomark Traceback (Z4TGT). Wireless Personal Communications, 114, 3541–3575. https://doi.org/10.1007/s11277-020-07546-1

    Article  Google Scholar 

  22. Kim, J.-H., & Kum, D.-S. (2015). Threat prediction algorithm based on local path candidates and surrounding vehicle trajectory predictions for automated driving vehicles. In 2015 IEEE intelligent vehicles symposium (IV). IEEE.

  23. Anderson, S. J., Karumanchi, S. B., & Iagnemma, K. (2012). Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In IEEE intelligent vehicles symposium. IEEE.

  24. Weiskircher, T., & Ayalew, B. (2015). Frameworks for interfacing trajectory tracking with predictive trajectory guidance for autonomous road vehicles. In 2015 American control conference (ACC). IEEE.

  25. Klotz, M. (2002). An automotive short-range high-resolution pulse radar network Berichte aus der Elektrotechnik, ISSN 0945-0718, Shaker.

  26. Stanislas, L., & Peynot, T. (2015). Characterisation of the Delphi electronically scanning radar for robotics applications. In Proceedings of the Australasian conference on robotics and automation 2015. Australian Robotics and Automation Association.

  27. Gu, T., & Dolan, J. M. (2012). On-road motion planning for autonomous vehicles. Springer, Berlin, Heidelberg: In International conference on intelligent robotics and applications.

    Book  Google Scholar 

  28. Ma, L., Xue, J., Kawabata, K., Zhu, J., Ma, C., & Zheng, N. (2015). Efficient sampling-based motion planning for on-road autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1961–1976. https://doi.org/10.1109/TITS.2015.2389215

    Article  Google Scholar 

  29. Sun, J., & Chen, S. (2013). Dynamic speed guidance for active highway signal coordination: roadside against in-car strategies. IET Intelligent Transport Systems, 7(4), 432–444.

    Article  Google Scholar 

  30. Chu, K., Lee, M., & Sunwoo, M. (2012). Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1599–1616.

    Article  Google Scholar 

  31. Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., & How, J. P. (2009). Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems Technology, 17(5), 1105–1118. https://doi.org/10.1109/TCST.2008.2012116

    Article  Google Scholar 

  32. Sudhakar, S., & Pandian, S. C. (2016). Hybrid cluster-based geographical routing protocol to mitigate malicious nodes in mobile ad hoc network. International Journal of Ad Hoc and Ubiquitous Computing, 21(4), 224–236. https://doi.org/10.1504/IJAHUC.2016.076358

    Article  Google Scholar 

  33. Lu, Z., Zhao, L., Liu, Z. (2013). A path-planning algorithm for parallel automatic parking. In 3rd IEEE international conference on instrumentation, measurement, computer, communication and control (pp 474–478).

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Sengan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, P., Sengan, S., Marimuthu, B.P. et al. Novel Collision Detection and Avoidance System for Midvehicle Using Offset-Based Curvilinear Motion. Wireless Pers Commun 119, 2323–2344 (2021). https://doi.org/10.1007/s11277-021-08333-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08333-2

Keywords

Navigation