Skip to main content
Log in

Encryption Based Strategy to Overcome the Problem of Pilot Contamination Within Multi-cellular Massive MIMO Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The problem of inter-cell interferences keeps its site as the most challenging constraint that faces the massive multi-input multi-output (M-MIMO) technology. This constraint, known as the problem of pilot contamination (PC), is a direct result of reusing the same set of orthogonal pilot sequences (OPSs) across several cells, due to the scarcity of available pilot resources, compared to the number of the user equipments (UEs) that must be served, the reuse of the same OPSs within different cells is unavoidable. Accordingly, assigning the available OPSs to the UEs should be managed to address the PC problem. To reach that goal, a new decontaminating strategy is proposed herein, which is referred to as the ENCryption-based decontaminating strategy (ENC). The ENC strategy is based on injecting some recognition pilot symbols within the pilot sequence of the UEs; hence, the base stations become able to distinguish between the desired pilot signals from the undesired ones, therefore, the quality of servicecan be enhanced, furthermore, the proposed ENC strategy is of low computational complexity compared to the existing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.

    Article  Google Scholar 

  2. Lu, L., et al. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  3. Ahmadabadian, M., et al. (2020). Energy efficiency maximization in FDD massive MIMO systems with channel aging. Wireless Networks, 26, 4031–4044.

    Article  Google Scholar 

  4. Sanguinetti, L., et al. (2020). Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, 68(1), 232–257.

    Article  Google Scholar 

  5. Bjornson, E., et al. (2017). Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), 154–655.

    Article  Google Scholar 

  6. Elijah, O., et al. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Communications Surveys and Tutorials, 18(2), 905–923.

    Article  Google Scholar 

  7. Boulouird, M., Riadi, A., & Hassani, M. M. (2017). Pilot contamination in multi-cell massive-MIMO systems in 5G wireless communications. In 2017 international conference on electrical and information technologies (ICEIT) (pp. 1–4). https://doi.org/10.1109/eitech.2017.8255299.

  8. Belhabib, A., Boulouird, M., & Hassani, M. M. (2019). Mitigation techniques of pilot contamination in massive MIMO systems for 5G wireless communications: An overview. Colloque International TELECOM 2019 & 11\(\grave{e}\)mes JFMMA, Saidia, Morocco.

  9. Qi, C., et al. (2020). QoS constrained pilot allocation scheme for massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(5), 5661–5665.

    Article  Google Scholar 

  10. Hua, Y. K., Chang, W., & Su, S. L. (2020). Cooperative scheduling for pilot reuse in massive MIMO systems. IEEE Transactions on Vehicular Technology, 69(11), 12857–12869.

    Article  Google Scholar 

  11. Zhu, X., et al. (2015). Graph coloring based pilot allocation to mitigate pilot contamination for multi-cell massive MIMO systems. IEEE Communications Letters, 19(10), 1842–1845.

    Article  Google Scholar 

  12. Zhu, X., et al. (2017). Weighted-graph-coloring-based pilot decontamination for multicell massive MIMO systems. IEEE Transactions on Vehicular Technology, 66(3), 2829–2834.

    Article  Google Scholar 

  13. Fan, J., et al. (2018). Pilot contamination mitigation by fractional pilot reuse with threshold optimization in massive MIMO systems. Digital Signal Processing, 78, 197–204.

    Article  Google Scholar 

  14. Chang, W., et al. (2018). Weighted graph coloring based softer pilot reuse for TDD massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(7), 6272–6285.

    Article  Google Scholar 

  15. Poddar, J., & Subhashini, K. R. (2020). An approach for data rate maximization and interference mitigation in massive MIMO communication systems using SRPWGC-PD algorithm. Wireless Personal Communications, 115, 499–525.

    Article  Google Scholar 

  16. Akhlaghpasand, H., et al. (2020). Jamming suppression in massive MIMO systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 182–186.

    Article  Google Scholar 

  17. Hassan, M., et al. (2020). Pilot contamination attack detection for multi-cell MU-massive MIMO system. International Journal of Electronics and Communications, 113, 152945.

    Article  Google Scholar 

  18. Shao, L. (2019). Coordinated multicell beamforming and power allocation for massive MIMO: A large system analysis. Signal Processing, 164, 41–47.

    Article  Google Scholar 

  19. Huang, Y., et al. (2013). Joint beamforming and power control in coordinated multicell: Max–min duality, effective network and large system transition. IEEE Transactions on Wireless Communications, 12(6), 2730–2742.

    Article  Google Scholar 

  20. Marinello, J. C., et al. (2017). Joint uplink and downlink optimization of pilot assignment for massive MIMO with power control. Transaction on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3250

    Article  Google Scholar 

  21. Zhu, X., et al. (2016). Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems. IEEE Transactions on Vehicular Technology, 65(5), 3285–3298.

    Article  Google Scholar 

  22. Kenarsari, S. R., & Naeiny, M. F. (2019). Adaptive pilot reuse scheme for nonzero neighborhood structured downlink channel in massive MIMO. International Journal of Electronics and Communications, 99, 48–58.

    Article  Google Scholar 

  23. Chang, W., et al. (2017). Partial overlapped time-shifted pilots for massive MIMO systems. IEEE Communications Letters, 21(11), 2480–2483.

    Article  Google Scholar 

  24. Belhabib, A., Boulouird, M., & Hassani, M. M. (2020). Smart switching strategy-based supervision rule to mitigate the problem of pilot contamination in massive MIMO systems. Wireless Communications and Mobile Computing, 2020, 8868597. https://doi.org/10.1155/2020/8868597.

  25. Borah, J., & Bora, J. (2020). Energy-efficient ICI mitigation with dynamic and location-based power allocation in mobility-based 5G HetCN. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07930-x

    Article  Google Scholar 

  26. Ghori, M. U., et al. (2018). Comparative analysis of intercell interference mitigation techniques in LTE-A network. Wireless Personal Communication, 99, 1159.

    Article  Google Scholar 

  27. Marzetta, T. L., et al. (2016). Fundamentals of massive MIMO. Cambridge University Press.

    Book  Google Scholar 

  28. Ngo, H. Q., & Larsson, E. G. (2017). No downlink pilots are needed in TDD massive MIMO. IEEE Transactions on Wireless Communications, 16(5), 2921–2935.

    Article  Google Scholar 

  29. Bjornson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boulouird.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The Proof of (10)

A RPS is injected between the PS of each UE, where the same pilot symbol is reused for the UEs of the same cell, while orthogonal ones are used for the adjacent cells. Thus, the set of the PSs used by the UEs of the jth cell can be expressed as follows:

$$\begin{aligned} \varPhi _j= \begin{pmatrix} \psi _{1}^j \\ \psi _{2}^j \\ \vdots \\ \psi _{K}^j \end{pmatrix} = \begin{pmatrix} \phi _{j}^{rec}&{} \phi _{1}^2 &{}\phi _{1}^3&{} \ldots &{} \phi _{1}^{\tau +1} \\ \phi _{2}^1 &{}\phi _{j}^{rec} &{}\phi _{2}^3&{} \ldots &{} \phi _{2}^{\tau +1} \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{}\vdots \\ \phi _{K}^1 &{}\phi _{K}^2&{}\ldots &{} \phi _{K}^\tau &{}\phi _{j}^{rec} \end{pmatrix} \end{aligned}$$
(22)

It is well seen that the same RPS (i.e. \(\phi _{j}^{rec}\) for the UEs of the jth cell) is employed by the UEs of the same cell in a non-overlapped time slots i.e. the first row of (22) corresponds to the UE\(-1\) of cell\(-j\) and it uses \(\phi _{j}^{rec}\) in its first time slot, while in the second row the same RPS is used in the second time slot and so on for the other UEs. By considering the orthogonality condition, we have the following:

  1. 1.

    \(\phi _{j}^{rec} \phi _{k}^i=0\) \(\forall\) {\(i=1,\ldots ,\tau\), \(k=1,\ldots ,K\) } and \(\forall j=1,\ldots ,L\): no intra-cell interferences.

  2. 2.

    \(\phi _{j}^{rec} \phi _{l}^{rec}=\delta _{j,l}\): no inter-RPS interferences.

  3. 3.

    \(\phi _{k}^p \phi _{k'}^{n}=\delta _{k,k'}\delta _{p,n}\): no intra-cell interferences.

Therefore, the orthogonality condition can be expressed as:

$$\begin{aligned} \varPhi _l \varPhi _j^H&= \begin{pmatrix} \phi _{j}^{rec}&{} \phi _{1}^2 &{}\phi _{1}^3&{} \ldots &{} \phi _{1}^{\tau +1} \\ \phi _{2}^1 &{}\phi _{j}^{rec} &{}\phi _{2}^3&{}\ldots &{} \phi _{2}^{\tau +1} \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{}\vdots \\ \phi _{K}^1 &{}\phi _{K}^2&{}\ldots &{} \phi _{K}^\tau &{}\phi _{j}^{rec} \end{pmatrix} \begin{pmatrix} (\phi _{j}^{rec})^H &{} (\phi _{2}^1)^H &{} \ldots &{}(\phi _{K}^1)^H \\ (\phi _{1}^2)^H &{}(\phi _{j}^{rec})^H &{}\ldots &{} (\phi _{K}^2)^H \\ \vdots &{} \vdots &{} \vdots &{}\vdots \\ (\phi _{1}^{\tau +1})^H&{}(\phi _{2}^{\tau +1})^H&{}\ldots &{}(\phi _{j}^{rec})^H \end{pmatrix} \\&=\begin{pmatrix} \tau +\delta _{j,l}, &{} 0 &{} \ldots &{} \ldots &{}0&{}0 \\ 0,&{} \tau +\delta _{j,l},&{} &{} &{}&{} \\ 0&{} 0&{} \tau +\delta _{j,l}, &{}0 &{} \ldots &{} \vdots \\ \vdots &{} \vdots &{}0 &{} \ldots &{}&{} 0 \\ 0,&{} , &{} 0&{} \ldots &{}0&{} \tau +\delta _{j,l} \end{pmatrix} \\&=(\tau +\delta _{j,l})\mathcal {I}_{\mathcal{K}} \end{aligned}$$
(23)

1.2 The Proof of (12)

In order to estimate the channels, the UEs uplink their PSs, therefore, the BS of jth cell correlates its received pilot signal (11) with its local PSs \(\varPhi _j=[(\psi _{1}^j)^T, (\psi _{2}^j)T,\ldots ,(\psi _{K}^j)T]^T \in \mathcal {C}^{K\times (\tau +1)}\). Thus, the estimated CSI can be expressed as:

$$\begin{aligned} \hat{H}_{j,j}&=\frac{Y_j \varPhi _j^H}{\sqrt{\rho _p}} \\&=\sum _{l=1}^{L} H_{j,l} \begin{pmatrix} \phi _{l}^{rec}&{} \phi _{1}^2 &{}\phi _{1}^3&{}\ldots &{} \phi _{1}^{\tau +1} \\ \phi _{2}^1 &{}\phi _{l}^{rec} &{}\phi _{2}^3&{}\ldots &{} \phi _{2}^{\tau +1} \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{}\vdots \\ \phi _{K}^1 &{}\phi _{K}^2&{}... &{} \phi _{K}^\tau &{}\phi _{l}^{rec} \end{pmatrix} \begin{pmatrix} (\phi _{j}^{rec})^H &{} (\phi _{2}^1)^H &{} \ldots &{}(\phi _{K}^1)^H \\ (\phi _{1}^2)^H &{}(\phi _{j}^{rec})^H &{}\ldots &{} (\phi _{K}^2)^H \\ \vdots &{} \vdots &{} \vdots &{}\vdots \\ (\phi _{1}^{\tau +1})^H&{}(\phi _{2}^{\tau +1})^H&{}\ldots &{}(\phi _{j}^{rec})^H \end{pmatrix} +\frac{N_j \varPhi _j^H}{\sqrt{\rho _p}} \end{aligned}$$
(24)
$$\begin{aligned} \\&= H_{j,j} \begin{pmatrix} \alpha _{j,j}+\sum _{i=1}^{\tau } \phi _{1,j}^i(\phi _{1,j}^i)^H,&{} \sum _{i=1}^{\tau } \phi _{1,j}^i(\phi _{2,j}^i)^H+\alpha _{j,j}, &{} &{},\ldots ,&{}&{} \sum _{i=1}^{\tau } \phi _{1,j}^2(\phi _{K,j}^i)^H+\alpha _{j,j} \\ \sum _{i=1}^{\tau } \phi _{2,j}^i(\phi _{1,j}^i)^H+\alpha _{j,j},&{} \sum _{i=1}^{\tau } \phi _{2,j}^i(\phi _{2,j}^i)^H+\alpha _{j,j}, &{} &{},\ldots ,&{}&{} \sum _{i=1}^{\tau } \phi _{2,j}^2(\phi _{K,j}^i)^H+\alpha _{j,j} \\ \vdots &{} \vdots &{} &{} &{}&{} \vdots \\ \vdots &{} \vdots &{} &{} &{}&{} \vdots \\ \sum _{i=1}^{\tau } \phi _{K,j}^i(\phi _{1,j}^i)^H+\alpha _{j,j},&{} \sum _{i=1}^{\tau } \phi _{K,j}^i(\phi _{2,j}^i)^H+\alpha _{j,j}, &{} &{},\ldots ,&{}&{} \sum _{i=1}^{\tau } \phi _{K,j}^2(\phi _{K,j}^i)^H+\alpha _{j,j} \end{pmatrix} \end{aligned}$$
(25)
$$\begin{aligned} \\&\quad + \sum _{l=1,l\ne j}^{L} H_{j,l} \begin{pmatrix} \sum _{i=1}^{\tau } \phi _{1,l}^i(\phi _{1,j}^i)^H+\alpha _{l,j},&{} \sum _{i=1}^{\tau } \phi _{1,l}^i(\phi _{2,j}^i)^H+\alpha _{l,j}, &{} &{},\ldots ,&{} \sum _{i=1}^{\tau } \phi _{1,l}^2(\phi _{K,j}^i)^H+\alpha _{l,j} \\ \sum _{i=1}^{\tau } \phi _{2,l}^i(\phi _{1,j}^i)^H+\alpha _{l,j},&{} \sum _{i=1}^{\tau } \phi _{2,l}^i(\phi _{2,j}^i)^H+\alpha _{l,j}, &{} &{},\ldots ,&{}\sum _{i=1}^{\tau } \phi _{2,l}^2(\phi _{K,j}^i)^H+\alpha _{l,j} \\ \vdots &{} \vdots &{} &{}&{} \vdots \\ \vdots &{} \vdots &{} &{}&{} \vdots \\ \sum _{i=1}^{\tau } \phi _{K,l}^i(\phi _{1,j}^i)^H+\alpha _{l,j},&{} \sum _{i=1}^{\tau } \phi _{K,l}^i(\phi _{2,j}^i)^H+\alpha _{j,j}, &{} &{},\ldots ,&{}\sum _{i=1}^{\tau } \phi _{K,l}^2(\phi _{K,j}^i)^H+\alpha _{l,j} \end{pmatrix} \\&\quad +\frac{N_j \varPhi _j^H}{\sqrt{\rho _p}} \end{aligned}$$
(26)

where \(\alpha _{j,j}=\phi _j^{rec}( \phi _j^{rec})^H\) and \(\alpha _{j,l}=\phi _j^{rec}(\phi _l^{rec})^H=\phi _l^{rec}(\phi _{k,j}^i)^H=0\) are considered \(\forall (j \ne l)=1,\ldots ,L\), \(\forall i=1,\ldots ,\tau\), and \(\forall k=1,\ldots ,K\).

Therefore, the estimated CSI is then expressed as:

$$\begin{aligned} \hat{H}_{j,j}&= H_{j,j} \begin{pmatrix} \tau +1, &{} 0 &{} \ldots &{} \ldots &{}0&{}0 \\ 0,&{} \tau +1,&{} &{} &{}&{} \\ 0&{} 0&{} \tau +1, &{}0 &{} \ldots &{} \vdots \\ \vdots &{} \vdots &{}0 &{} \ldots &{}&{} 0 \\ 0,&{} , &{} 0&{} \ldots &{}0&{} \tau +1 \end{pmatrix} \\&\quad + \sum _{l=1,l\ne j}^{L} H_{j,l} \begin{pmatrix} \tau +0 , &{} 0 &{} \ldots &{} \ldots &{}0&{}0 \\ 0,&{} \tau +0 ,&{} &{} &{} &{} \\ 0&{} 0&{} \tau +0 , &{}0 &{} \ldots &{} \vdots \\ \vdots &{} \vdots &{}0 &{} \ldots &{} &{} 0 \\ 0,&{} , &{} 0&{} \ldots &{}0&{} \tau +0 \end{pmatrix} +\frac{N_j \varPhi _j^H}{\sqrt{\rho _p}} \\&=H_{j,j}(\tau +1) I_{K,K}+\sum _{l=1, l\ne j}^{L} H_{j,l} \tau I_{K,K}+\frac{N_j \varPhi _j^H}{\sqrt{\rho _p}} \end{aligned}$$
(27)

Therefore, the estimated CSI at the BS of jth cell is:

$$\begin{aligned} \hat{H}_{j,j} = (\tau +1) H_{j,j} +\tau \sum _{l=1, l\ne j}^{L} H_{j,l} +\frac{N_j \varPhi _j^H}{\sqrt{\rho _p}} \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulouird, M., Belhabib, A. & Riadi, A. Encryption Based Strategy to Overcome the Problem of Pilot Contamination Within Multi-cellular Massive MIMO Systems. Wireless Pers Commun 119, 2639–2655 (2021). https://doi.org/10.1007/s11277-021-08349-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08349-8

Keywords

Navigation