Skip to main content
Log in

Hetero-GCD2RDF: An Interoperable Solution for Geospatial Climatic Data by Deploying Semantic Web Technologies

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Ocean and Land based satellite observation system comprises of various sensors and configurations. The generated Geospatial Climatic Data (GCD) by sensors is transmitted in heterogeneous file formats with heterogeneous vocabularies that lead to semantic heterogeneity of data. Government and public organizations started to publish these datasets to users through climatic web portals. The critical task in handling heterogeneous files is data interpretation and interoperability. This can be handled by facilitating the data to reach semantically structured or linked data. This paper proposes a Hetero-GCD2RDF data retrieval approach that focuses on two aspects (1) Extraction of records from satellite data and represent it as linked data namely Resource Description Framework (RDF) and (2) Implementation of SPARQL query engine to the resultant RDF for data retrieval. Data from Indian Meteorological Satellite INSAT-3D is taken as a typical example to execute the proposed approach. Where, approximately 170 files of about 650 MB in memory containing 1,278,000 records have been converted and queried. Compared to conventional methods the proposed method saves nearly 38.12% of time to represent the data in RDF. Thus, the proposed Hetero-GCD2RDF approach is recognized to be efficient, reliable and suitable for semantic web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee, J. G., & Kang, M. (2015). Geospatial big data: Challenges and opportunities. Big Data Research, 2, 74–81.

    Article  Google Scholar 

  2. Amirian, P., Van Loggerenberg, F., Lang, T., & Varga, M. (2015). Geospatial big data for finding useful insights from machine data. GIS Research UK: University of Leeds, UK.

    Google Scholar 

  3. Caitlin, D. (2012). Where is the phrase 80% of data is geographic from?. https://www.gislounge.com/80-percent-data-is-geographic. Accessed 12 February 2019.

  4. Caitlin, D. (2014). What is the difference between GIS and geospatial. https://www.gislounge.com/difference-gis-geospatial. Accessed 14 April 2019.

  5. Kristin, S., & Hans, G. (2016). Geospatial reasoning with open data. Automating Open Source Intelligence, 12, 171–204.

    Google Scholar 

  6. Judie, A., Fabrizio, O., Simon, S., & Sören, A. (2015). A systematic review of open government data initiatives. Government Information Quarterly, 32, 399–418.

    Article  Google Scholar 

  7. Nitant, D., Ravindranath, N. M., Sunitha, A., & Suresh, B. G. (2015). An ontology based methodology for satellite data semantic interoperability. Advances in Electrical and Computer Engineering, 15, 105–110.

    Google Scholar 

  8. Sande, M. L., Vocht, L. D., Deursen, D. V., Mannens, E., & Walle, R. V. d. (2012). Lightweight Transformation of Tabular Open Data to RDF. In Proceedings of the I-SEMANTICS 2012 posters & demonstrations Track (pp. 38–42).

  9. Klyne, G., & Carroll, J. J. (2004). Resource description framework (RDF): Concepts and Abstract Syntax. W3C Recommendation, World Wide Web Consortium. https://www.w3.org/TR/rdf-concepts/. Accessed 28 July, 2020.

  10. Ermilov, I., Auer, S., & Stadler, C. (2012). Crowd-Sourcing the Large-Scale Semantic Mapping of Tabular Data. WebSci '12. In Proceedings of the 4th annual ACM web science conference.

  11. Humaira, A., Tabbasum, N., & Ayesha, S. (2015). A survey on automatic mapping of ontology to relational database schema. Research Journal of Recent Sciences, 4(4), 66–70.

    Google Scholar 

  12. Deursen, D. V., Poppe, C., Martens, G., Mannens, E., & Walle, R. V. d. (2008). XML to RDF conversion: A generic approach. In International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution.

  13. Junghee, J., & Lee, K. W. (2018). High-performance geospatial big data processing system based on MapReduce. International Journal of Geo-Information, 7, 1–18.

    Google Scholar 

  14. Péter, S., Gergely, L., Tamás, B., & Zsolt, N. (2014). The Semantic Web Explained—the technology and mathematics behind Web 3.0. Ireland, DC: Cambridge University Press.

    MATH  Google Scholar 

  15. Tim, B. L., James, H., & Ora, L. (2016). The Semantic Web, A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C. Accessed 15 July 2019.

  16. Sohn, J., Bae, U., & Chung, I. (2013). Contents recommendation method using social network analysis. Wireless Personal Communications, 73, 1529–1546.

    Article  Google Scholar 

  17. Heiner, S. (2002). Approximate Information Filtering on the Semantic Web. In Proceedings of 25th annual German conference on AI: Advances in artificial intelligence (pp. 114–128).

  18. Narni, R. (2015). A basic description about RDF, and why it is important to Semantic web. Article of technology. https://www.slideshare.net/featured/category/technology. Accessed 12 August 2019.

  19. Petersen, M. (2007). Personalized DVB-H service discovery beyond 3G. Wireless Personal Communications, 40, 433–441.

    Article  Google Scholar 

  20. Thuy, P. T. T., Lee, Y., & Lee, S. (2013). A semantic approach for transforming XML data into RDF ontology. Wireless Personal Commuication, 73, 1387–1402.

    Article  Google Scholar 

  21. Gazis, V., Alonistioti, N., & Merakos, L. (2006). Metadata design for reconfigurable protocol stacks in systems beyond 3G. Wireless Personal Communication, 36, 1–28.

    Article  Google Scholar 

  22. Georges, G., Ivan, B., & Benjamin, N. (2008). Deriving Ontologies from XML Schema. In Proceedings of entrepots de Donnees et Analyse en Ligne (EDA) (pp. 9–23).

  23. Ivan, B. Christopher, M., Peter, F. P., & Benjamin, N. (2011). Transforming XML Schema to OWL Using Patterns. In Proceedings of IEEE: 5th international conference on semantic computing (icsc) (pp. 102–109).

  24. Kumar, S., Ujjal, M., & Utpal, B. (2015). Automatically converting tabular data to Rdf: An ontological approach. International Journal of Web and Semantic Technology, 6, 71–86.

    Article  Google Scholar 

  25. Jonathan, Y., Nicholas, J. C., Adam, L., Bruce. A. S., & Simon, J. D. (2015). Towards Linked Data Conventions for Delivery of Environmental Data Using NetCDF. In Proceedings of international symposium on environmental software systems: infrastructures (pp. 102–112).

  26. Smith, S. R., Lopez, N., & Bourassa, M. A. (2016). SAMOS air-sea fluxes: 2005–2014. GeoScience Data Journal, 3(9–19), 2016.

    Google Scholar 

  27. Quillon, H., Julien, L., Antonio, P., Elisabetta, F., Bert, J., & Antonella, G. (2016). Using OpenMI and a model map to integrate Waterml2 and Netcdf Data sources into flood modeling of Genoa, Italy. JAWRA Journal of the American Water Resources Association, 52, 811–815.

    Article  Google Scholar 

  28. Pavel, M., & Milton, W. (2013). RNetCDF—A package for reading and writing NetCDF datasets. Contributed Research Articles 29. The R Journal, 5, 29–36.

    Google Scholar 

  29. Gurbrinder, K. (2014). Reading and Writing NetCDF Datasets: Tools and Techniques. International Journal of Scientific & Engineering Research, 5(983), 2014.

    Google Scholar 

  30. Lashkari, A., Salehnia, N., Asadi, S., Paymard, P., Zare, H., & Bannayan, M. (2018). Evaluation of different gridded rainfall datasets for rainfed wheat yield prediction in an arid environment. International Journal of Biometeorology, 62, 1543–1556.

    Article  Google Scholar 

  31. Shujia, Z., Xi, Y., Xiaowen, L., Toshihisa, M., Si, L., Xian-He, S., & Weikuo, T. (2015). A Hadoop-Based Visualization and Diagnosis Framework for Earth Science Data. In Proceedings of IEEE: International conference on big data (pp. 1972–1977).

  32. Shujia, Z., Xiaowen, L., Toshihisa, M., & Weikuo, T. (2016). Visualization and diagnosis of earth science data through hadoop and spark. In Proceedings of IEEE: International conference on big data (pp. 2974–2980).

  33. Rashmi, D., & Clara, K. (2016). A Sparql Query Generation Mechanism on RDF. International Journal of Computer Science and Mobile Computing, 5, 121–125.

    Google Scholar 

  34. Peng, P., Lei, Z., Tamer, M. O., Lei, C., & Dongyan, Z. (2016). Processing SPARQL queries over distributed RDF graphs. The VLDB Journal - The International Journal on Very Large Data Bases, 25, 243–268.

    Article  Google Scholar 

  35. Md Hasan, S. M., Md Altab, H., Hosney, J., Sheak, R., Haider, N., & Md Fokhray, H. (2018). CSV2RDF: Generating RDF data from CSV file using semantic web technologies. Journal of Theoretical and Applied Information Technology, 96, 6889–6902.

    Google Scholar 

  36. Alguliyev, R. M., Aliguliyev, R. M., & Sukhostat, L. V. (2020). Efficient algorithm for big data clustering on single machine. CAAI Transactions on Intelligence Technology, 5(1), 9–14.

    Article  Google Scholar 

  37. Qasim, L. M., & Abualigah, (2019). Feature selection and enhanced Krill Herd algorithm for text document clustering. In Studies in Computational Intelligence. Springer International Publishing, Switzerland.

  38. Abualigah, L., & Diabat, A. (2020). A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Cluster Computing,. https://doi.org/10.1007/s10586-020-03075-5

    Article  Google Scholar 

  39. Hosseini, R., & Rezvanian, R. (2020). AntLP: ant-based label propagation algorithm for community detection in social networks. CAAI Transactions on Intelligence Technology, 5(1), 34–44.

    Article  Google Scholar 

  40. Abualigah, L., Alfar, H. E., Shehab, M., & Hussein, A. M. A. (2020). Sentiment Analysis in Healthcare: A Brief Review. Recent Advances in NLP: The Case of Arabic Language, Studies in Computational Intelligence, 874, 129–141.

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Ministry of Earth Sciences (MoES), Government of India. The authors would like to express their sincere thanks to MoES for the financial support and Adhiyamaan College of Engineering for their moral support by providing all the facilities to develop the project successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Velu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, A., Thangavelu, M. Hetero-GCD2RDF: An Interoperable Solution for Geospatial Climatic Data by Deploying Semantic Web Technologies. Wireless Pers Commun 117, 3527–3551 (2021). https://doi.org/10.1007/s11277-021-08365-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08365-8

Keywords

Navigation