Skip to main content
Log in

Design of a Guitar Shaped UWB Antenna with Wide Band Notched Characteristics for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a guitar shape ultra-wideband (UWB) antenna having wide stop band along with altered ground layer is analyzed, manufactured and tested experimentally for wireless applications. The proposed UWB structure has overall size of 30 × 30 × 1.6 mm3 and has an impedance bandwidth of 7.5 GHz (3.1–10.6 GHz). A pair of inverted L shape and parallel I shape metallic stubs are added to UWB antenna to achieve a wide stop band from 3.1 to 5.8 GHz, therefore eliminating both undesired WiMAX and WLAN bands. Experimental results show that in the stop band region the measured values of maximum attenuation, VSWR, radiation efficiency and gain are − 1.07 dB, 18.7, 0.05 and − 7 dB respectively. Additionally, in passband region, the antenna exhibits omnidirectional radiation characteristics, good reflection coefficient, highest radiation efficiency and gain value of 0.82 and 5.8 dB. Effect of variation of metallic stubs (L and I) parameters on wide stop band along with equivalent circuit analysis is also investigated. The bandwidth of rejected band can be tuned easily by varying coupling gap between the patch antenna and metallic stubs. The proposed antenna structure is designed, optimized and simulated by utilizing computer simulation technology microwave studio software and further measured outcomes are in good agreement with simulated one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Report and order in the communication’s Rules Regarding Ultra-Wideband Transmission Systems. (2002). Released by Federal Communications Commission.

  2. Zhou, H. J., Sun, B. H., Liu, Q. Z., & Deng, J. Y. (2008). Implementation and investigation of U-shaped aperture UWB antenna with dual band-notched characteristics. Electronics Letters, 44(24), 1387–1388. https://doi.org/10.1049/el:20082661.

    Article  Google Scholar 

  3. Sohail, A., Alimgeer, K. S., Iftikhar, A., Ljaz, B., Kim, K. W., & Mohyuddin, W. (2018). Dual notch band UWB antenna with improved notch characteristics. Microwave and Optical Technology Letters, 60(4), 925–930. https://doi.org/10.1002/mop.31071.

    Article  Google Scholar 

  4. Dong, Y. D., Hong, W., Kuai, Z. Q., & Chen, J. X. (2009). Analysis of planar ultra-wideband antenna with on ground slot band notched structure. IEEE Transactions on Antennas and Propagation, 57(7), 1886–1893. https://doi.org/10.1109/TAP.2009.2021910.

    Article  Google Scholar 

  5. Li, T., Zhai, H., Li, G., Li, L., & Liang, C. (2012). A compact ultra-wideband antenna with four band-notched characteristics. Microwave and Optical Technology Letters, 54(12), 2862–2865. https://doi.org/10.1002/mop.27184.

    Article  Google Scholar 

  6. Mewara, H. S., Deegwal, J. K., & Sharma, M. M. (2018). A slot resonator based quintuple band-notched Y-shaped planar monopole ultra-wideband antenna. International Journal of Electronics and Communications, 83, 470–478. https://doi.org/10.1016/j.aeue.2017.10.035.

    Article  Google Scholar 

  7. Liu, J. J., Esselle, K. P., Hay, S. G., & Zhong, S. S. (2013). Planar ultra-wideband antenna with five notched stop bands. Electronic Letters, 49(9), 579–580. https://doi.org/10.1049/el:2012.4123.

    Article  Google Scholar 

  8. Yadav, A., Yadav, R. P., & Alphones, A. (2019). CPW fed triple band notched UWB antenna: Slot width tuning. Wireless Personal Communications, 111(4), 2231–2245. https://doi.org/10.1007/s11277-019-06983-x.

    Article  Google Scholar 

  9. Chakraborty, M., Pal, S., & Chattoraj, N. (2019). Quad notch UWB antenna using combination of slots and split-ring resonator. RF and Microwave Computer Aided Engineering, 30(3), e22086. https://doi.org/10.1002/mmce.22086.

    Article  Google Scholar 

  10. Garg, R. K., Nair, M. V. D., Singhal, S., & Tomar, R. (2020). A miniaturized ultra-wideband antenna using “modified” rectangular patch with rejection in WiMAX and WLAN bands. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.32732.

    Article  Google Scholar 

  11. Singh, C., & Kumawat, G. (2020). A compact rectangular ultra-wideband microstrip patch antenna with double band notch feature at Wi-Max and WLAN. Wireless Personal Communication, 114(9), 2063–2077. https://doi.org/10.1007/s1127-020-07465-1.

    Article  Google Scholar 

  12. Mandal, S., Karmakar, A., Singh, H., Mandal, S. K., Mahapatra, R., & Mal, A. K. (2019). A miniaturized CPW-fed on-chip UWB monopole antenna with band notch characteristics. International Journal of Microwave and Wireless Technologies, 12(1), 95–102. https://doi.org/10.1017/S1759078719000941.

    Article  Google Scholar 

  13. Siddique, A. K. M. A. H., Azim, R., & Islam, M. T. (2019). Compact planar ultra-wideband antenna with dual notched band for WiMAX and WLAN. International Journal of Microwave and Wireless Technologies, 11(7), 711–718. https://doi.org/10.1017/S1759078719000199.

    Article  Google Scholar 

  14. Weng, Y. F., Cheung, S. W., & Yuk, T. I. (2011). Compact ultra-wideband antenna with single band-notched characteristics using simple ground stubs. Microwave and Optical Technology Letters, 53(3), 523–529. https://doi.org/10.1002/mop.25817.

    Article  Google Scholar 

  15. Labade, R. P., Deosarkar, S. B., Pisharoty, N., & Malhotra, A. (2015). Printed dual band UWB monopole antenna with tri band notched characteristics for wireless communication. International Journal of Microwave and Optical Technology, 10(5), 343–350.

    Google Scholar 

  16. Wong, K. L., Chi, Y. W., Su, C. M., & Chang, F. S. (2005). Band-notched ultra-wideband circular-disc monopole antenna with an arc-shaped slot. Microwave and Optical Technology Letters, 45(3), 188–191. https://doi.org/10.1002/mop.20766.

    Article  Google Scholar 

  17. Sharma, M. M., Deegwal, J. K., Kumar, A., & Govil, M. C. (2014). Compact planar monopole UWB antenna with quadruple band-notched characteristics. Progress in Electromagnetics Research C, 47, 29–36. https://doi.org/10.2528/PIERC13121909.

    Article  Google Scholar 

  18. Zou, Q., & Jiang, S. (2020). A compact flexible fractal ultra-wideband antenna with band notch characteristic. Microwave Optical Technology Letters, 63(3), 895–901. https://doi.org/10.1002/mop.32678.

    Article  Google Scholar 

  19. Amani, N., & Jafargholi, A. (2019). Band-notched ultra-wideband antennas using nonperiodic composite right/left-handed resonators. RF and Microwave Computer Aided Engineering, 29(6), e21697. https://doi.org/10.1002/mmce.21697.

    Article  Google Scholar 

  20. Xu, B., Zhao, Y., Gu, L., & Nie, Z. (2019). Fork-shaped patch printed ultra-wideband slot antenna with dual band-notched characteristics using metamaterial unit cells. RF and Microwave Computer Aided Engineering, 29(7), e21742. https://doi.org/10.1002/mmce.21742.

    Article  Google Scholar 

  21. Majid, H. A., Kamal, M., Rahim, A., Hamid, M. R., Murad, N. A., Samsuri, N. A., Yusuf, M. F. M., & Ayop, O. (2015). Reconfigurable notched wideband antenna using EBG structure. Microwave and Optical Technology Letters, 57(2), 497–501. https://doi.org/10.1002/mop.28882.

    Article  Google Scholar 

  22. Singla, G., & Khanna, R. (2017). A modified compact ultrawideband antenna with band rejection for WLAN applications. Wireless Personal Communications, 97(5), 1–11. https://doi.org/10.1007/s11277-017-4531-6.

    Article  Google Scholar 

  23. Abdalla, M. A., Al-Mohamadi, A. A., & Mohamed, I. S. (2019). A miniaturized dual band EBG unit cell for UWB antennas with high selective notching. International Journal of Microwave and Wireless Technologies, 11(10), 1035–1043. https://doi.org/10.1017/S1759078719000710.

    Article  Google Scholar 

  24. Modak, S., Khan, T., & Laskar, R. H. (2019). Penta-band notched ultra-wideband monopole antenna loaded with electromagnetic bandgap-structures and modified U-shaped slots. RF and Microwave Computer Aided Engineering, 29(12), e21963. https://doi.org/10.1002/mmce.21963.

    Article  Google Scholar 

  25. Koziel, S., & Bekasiewicz, A. (2015). Fast simulation-driven design optimization of UWB band-notch antennas. IEEE Antennas and Wireless Propagation Letters, 15, 926–929. https://doi.org/10.1109/LAWP.2015.2481437.

    Article  Google Scholar 

  26. Li, W. T., Hei, Y. Q., Sunnaraman, H., Shi, X. W., & Chen, R. T. (2016). Novel printed filtenna with dual notches and good out-of-band characteristics for UWB-MIMO applications. IEEE Microwave and Wireless Components Letters, 26(10), 765–767. https://doi.org/10.1109/LMWC.2016.2601298.

    Article  Google Scholar 

  27. Peng, L., Wen, B. J., Li, X. F., Jiang, X., & Li, S. M. (2016). CPW fed UWB antenna by EBGs with wide rectangular notched-band. IEEE Access, 4, 9545–9552. https://doi.org/10.1109/ACCESS.2016.2646338.

    Article  Google Scholar 

  28. Sharma, M., Awasthi, Y. K., & Singh, H. (2017). Planar high rejection dual band- notch UWB antenna with X & Ku-bands wireless applications. International Journal of Microwave and Wireless Technologies, 9(8), 1725–1733. https://doi.org/10.1017/S1759078717000393.

    Article  Google Scholar 

  29. Mandal, T., & Das, S. (2017). Design of a CPW-fed UWB printed antenna with dual notch band using mushroom structure. International Journal of Microwave and Wireless Technologies, 9(2), 327–334. https://doi.org/10.1017/S1759078715001348.

    Article  Google Scholar 

  30. Yazdi, M., & Komjani, N. (2012). Planar UWB monopole antenna with dual band-notched characteristics for UWB applications. Microwave and Optical Technology Letters, 55(2), 241–245. https://doi.org/10.1002/mop.27301.

    Article  Google Scholar 

  31. Mandal, T., & Das, S. (2014). A coplanar waveguide fed hexagonal shape ultrawide band antenna with WIMAX and WLAN band rejection. Radioengineering, 23(4), 1077–1085.

    Google Scholar 

  32. Sanval, R., Sarkar, P. P., & Chowdhury, S. K. (2018). Quasi-self-complementary ultra-wideband antenna with band rejection characteristics. International Journal of Microwave and Wireless Technologies, 10(3), 1–9. https://doi.org/10.1017/S1759078717001106.

    Article  Google Scholar 

  33. Lin, Y., Liang, J., Wu, G., Xu, Z., & Niu, X. (2015). A novel UWB antenna with dual band-notched characteristics. Journal of RF Engineering and Telecommunication, 69(11–12), 479–483. https://doi.org/10.1109/WiSPNET.2016.7566459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Negi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, D., Khanna, R. & Kaur, J. Design of a Guitar Shaped UWB Antenna with Wide Band Notched Characteristics for Wireless Applications. Wireless Pers Commun 119, 2929–2950 (2021). https://doi.org/10.1007/s11277-021-08379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08379-2

Keyword