Skip to main content
Log in

Support Value-Based NFSMC for Wheeled Mobile Robot Path Tracking in Unknown Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile robot navigation is an obscure condition that plays a vital role in different applications such as military purposes, navy, etc. now a day's lot of problems occur during navigation. To solve the navigation problem an RGB-Depth sensor along with support value-based neuro-fuzzy sliding mode controller techniques (SVB-NFSMC) are proposed. The RGB-Depth sensor is used to estimate the depth map using the linear coefficients along with the bilateral filter. Then the angular and linear velocity is calculated to define the angular position and the object movement. Then the calculation of support value is based on the above angular and linear estimation values. Here the depth map and support value as a training data set input are given to the controller. Subsequently, the sliding mode controller provides the guiding commands in terms of guidance law, control law to the robot system. The ANFIS and the GWO algorithm are used to optimize the parameters is given to the controller then the Lyapunov function is used to analyze the stability of the system. Finally, compare the proposed work with the existing AKH-NFIS and the other SMC methods provides better outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Algabri, M., Mathkour, H., Ramdane, H., & Alsulaiman, M. (2015). Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, 50, 42–56.

    Article  Google Scholar 

  2. Patle, B. K., Anish Pandey, D. R., Parhi, K., & Jagadeesh, A. (2019). A review: On path planning strategies for navigation of mobile robot. Defence Technology, 15(4), 582–606.

    Article  Google Scholar 

  3. Di Castro, M., Ferre, M., & Masi, A. (2018). CERNTAURO: A modular architecture for robotic inspection and telemanipulation in harsh and semi-structured environments. IEEE Access, 6, 37506–37522.

    Article  Google Scholar 

  4. Patle, B. K., Parhi, D. R. K., Jagadeesh, A., & Kashyap, S. K. (2019). Application of probability to enhance the performance of fuzzy based mobile robot navigation. Applied Soft Computing, 75, 265–283.

    Article  Google Scholar 

  5. Singh, M. K., Parhi, D. R., & Pothal, J. K. (2009). ANFIS approach for navigation of mobile robots. In 2009 international conference on advances in recent technologies in communication and computing (pp. 727–731). IEEE.

  6. Tang, S. H., Kamil, F., Khaksar, W., Zulkifli, N., & Ahmad, S. A. (2015). Robotic motion planning in unknown dynamic environments: Existing approaches and challenges. In 2015 IEEE international symposium on robotics and intelligent sensors (IRIS) (pp. 288–294). IEEE.

  7. Pandey, A., & Parhi, D. R. (2016). New algorithm for behaviour-based mobile robot navigation in cluttered environment using neural network architecture. World Journal of Engineering, 13(2), 129–141.

    Article  Google Scholar 

  8. Deng, X., Zhang, Z., Sintov, A., Huang, J., & Bretl, T. (2018). Feature-constrained active visual SLAM for mobile robot navigation. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 7233–7238). IEEE

  9. Precup, R.-E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in Industry, 62(3), 213–226.

    Article  Google Scholar 

  10. Gao, L., Pan, S. L., & Shen, J. (2012). A robot path planning scheme based on neural network. Journal of Theoretical and Applied Information Technology, 46(2), 654–658.

    Google Scholar 

  11. Shen, K. Y. (2013). Implementing value investing strategy through an integrated fuzzy-ANN model. Journal of Theoretical and Applied Information Technology, 51(1), 150–157.

    Google Scholar 

  12. Hossen, M., Sayeed, M., Muhamad Amin, A. H., Abdullah, M. F. A., & Yusof, I. (2013). A novel adaptive fuzzy inference system for mobile robot navigation. Journal of Theoretical and Applied Information Technology, 57(3), 569–578.

    Google Scholar 

  13. Ali, K. K., Ali, S., & Moosavian, A. (2015). Adaptive sliding mode control of a wheeled mobile robot towing a trailer. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 229(2), 169–183.

    Google Scholar 

  14. Khanpoor, A., Khalaji, A. K., Ali, S., & Moosavian, A. (2017). Modeling and control of an underactuated tractor–trailer wheeled mobile robot. Robotica, 35(12), 2297–2318.

    Article  Google Scholar 

  15. Ayten, K. K., Çiplak, M. H., & Dumlu, A. (2019). Implementation a fractional-order adaptive model-based PID-type sliding mode speed control for wheeled mobile robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(8), 1067–1084.

    Google Scholar 

  16. Ye, T., Luo, Z., & Wang, G. (2020). Adaptive sliding mode control of robot based on fuzzy neural network. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6235–6247.

    Article  Google Scholar 

  17. Wang, L., Sheng, Y., & Liu, X. (2014). A novel adaptive high-order sliding mode control based on integral sliding mode. International Journal of Control, Automation and Systems, 12(3), 459–472.

    Article  Google Scholar 

  18. Yuan, Z., Tian, Y., Yin, Y., Wang, S., Liu, J., & Wu, L. (2019). Trajectory tracking control of a four mecanum wheeled mobile platform: An extended state observer-based sliding mode approach. IET Control Theory & Applications, 14(3), 415–426.

    Article  Google Scholar 

  19. Kurode, S., Spurgeon, S. K., Bandyopadhyay, B., & Gandhi, P. S. (2013). Sliding mode control for slosh-free motion using a nonlinear sliding surface. IEEE/ASME Transactions on Mechatronics, 18(2), 714–724.

    Article  Google Scholar 

  20. Fallaha, C. J., Saad, M., Kanaan, H. Y., & Al-Haddad, K. (2011). Sliding-mode robot control with exponential reaching law. IEEE Transactions on Industrial Electronics, 58(2), 600–610.

    Article  Google Scholar 

  21. Cui, R., Chen, L., Yang, C., & Chen, M. (2017). Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Transactions on Industrial Electronics, 64(8), 6785–6795.

    Article  Google Scholar 

  22. Truong, X.-T., & Ngo, T. D. (2017). Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model. IEEE Transactions on Automation Science and Engineering, 14(4), 1743–1760.

    Article  Google Scholar 

  23. Bouguenna, I. F., Azaiz, A., Tahour, A., & Larbaoui, A. (2019). Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system. Energy, 169, 1054–1063.

    Article  Google Scholar 

  24. Li, Z., You, B., Ding, L., Gao, H., & Huang, F. (2019). Trajectory tracking control for WMRs with the time-varying longitudinal slippage based on a new adaptive SMC method. International Journal of Aerospace Engineering, 2019, 1–13.

    Google Scholar 

  25. Gheisarnejad, M., & Khooban, M.-H. (2019). Supervised control strategy in trajectory tracking for a wheeled mobile robot. IET Collaborative Intelligent Manufacturing, 1(1), 3–9.

    Article  Google Scholar 

  26. Liu, K., Gao, H., Ji, H., & Hao, Z. (2020). Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. International Journal of Control, Automation and Systems, 18(5), 1288–1298.

    Article  Google Scholar 

  27. Han, S. I. (2017). Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems. IET Control Theory & Applications, 12(2), 282–290.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Sudan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M.S., Samanta, A., Sanyal, S. et al. Support Value-Based NFSMC for Wheeled Mobile Robot Path Tracking in Unknown Environments. Wireless Pers Commun 119, 2991–3011 (2021). https://doi.org/10.1007/s11277-021-08382-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08382-7

Keywords