Skip to main content
Log in

A Novel Approach to D2D Discovery in PSN for Post-Disaster: Throughput Based Discovery Algorithm (TDA)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

After a disaster occurs, effective communication between the people and the institutions of disaster or emergency management is vital. Device to device (D2D) discovery and communication provides communication services in such difficult situations without the requirement of network infrastructure and by reducing call traffic in cellular communication networks. Considering the fact that almost everyone uses a smart mobile device (UE-User Equipment), the D2D communication method seems the most suitable solution for a post-disaster situation. In particular, this method plays important role in fifth generation 5G communication networks. The device discovery or UE discovery is fundamental strategy in D2D communication. In this study, a Throughput-based Discovery Algorithm (TDA) is proposed to find D2D peers among devices on Public Security Network (PSN) in a post-disaster situation. A sample scenario was created to test the performance of the proposed TDA, and the TDA was compared to some discovery algorithms, such as Shortest Distance Algorithm (SDA), Maximum SINR with No limit on the distance of discovery Algorithm (MSNA), and Maximum SINR with Limit on the distance of discovery Algorithm (MSLA). In terms of the outage SINR and average pair SINR metrics, the proposed TDA showed better performance than the other discovery (MSNA, SDA, and MSLA) algorithms for D2D discovery in the disaster area.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52(4), 56–65. https://doi.org/10.1109/MCOM.2014.6807947.

    Article  Google Scholar 

  2. Hicham, M., Abghour, N., & Ouzzif, M. (2016). Device-to-device (D2D) communication under LTE-advanced networks. International Journal of Wireless & Mobile Networks, 8(1), 11–22. https://doi.org/10.5121/ijwmn.2016.8102.

    Article  Google Scholar 

  3. Baldini, G., Karanasios, S., Allen, D., & Vergari, F. (2014). Survey of wireless communication technologies for public safety. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/SURV.2013.082713.00034.

    Article  Google Scholar 

  4. He, D., Chan, S., & Guizani, M. (2017). Drone-assisted public safety networks: the security aspect. IEEE Communications Magazine, 55(8), 218–224. https://doi.org/10.1109/MCOM.2017.1600799CM.

    Article  Google Scholar 

  5. Shah, S. T., Hasan, S. F., Seet, B. C., Chong, P. H. J., & Chung, M. Y. (2018). Device-to-device communications: A contemporary survey. Wireless Personal Communications. https://doi.org/10.1007/s11277-017-4918-4.

    Article  Google Scholar 

  6. Kumbhar, A., Koohifar, F., Güvenç, I., & Mueller, B. (2017). A survey on legacy and emerging technologies for public safety communications. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/COMST.2016.2612223.

    Article  Google Scholar 

  7. Yu, W., Xu, H., Nguyen, J., Blasch, E., Hematian, A., & Gao, W. (2018). Survey of public safety communications: User-side and network-side solutions and future directions. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2879760.

    Article  Google Scholar 

  8. Pinelli, J. P., Esteva, M., Rathje, E. M., Roueche, D., Brandenberg, S. J., Mosqueda, G., Padgett, J., & Haan, F. (2020). Disaster risk management through the designsafe cyberinfrastructure. International Journal of Disaster Risk Science, 11(6), 719–734. https://doi.org/10.1007/s13753-020-00320-8.

    Article  Google Scholar 

  9. Qadir, Z., Ullah, F., Munawar, H. S., & Al-Turjman, F. (2021). Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Computer Communications, 168, 114–135. https://doi.org/10.1016/j.comcom.2021.01.003.

    Article  Google Scholar 

  10. Ali, K., Nguyen, H. X., Shah, P., & Vien, Q. T. (2017). Energy efficient and scalable D2D architecture design for public safety network. In 2016 International Conference on Advanced Communication Systems and Information Security, ACOSIS 2016 - Proceedings. https://doi.org/10.1109/ACOSIS.2016.7843929

  11. Kar, U. N., & Sanyal, D. K. (2020). A critical review of 3GPP standardization of device-to-device communication in cellular networks. SN Computer Science. https://doi.org/10.1007/s42979-019-0045-5.

    Article  Google Scholar 

  12. Akyildiz, I. F., Nie, S., Lin, S. C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106, 17–48. https://doi.org/10.1016/j.comnet.2016.06.010.

    Article  Google Scholar 

  13. Gandotra, P., & Jha, R. K. (2016). Device-to-device communication in cellular networks: A survey. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2016.06.004.

    Article  Google Scholar 

  14. Mukherjee, P., & De, T. (2021). Content independent location based clustering for 5G device to device communications. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08143-6.

    Article  Google Scholar 

  15. Chakraborty, C., & Rodrigues, J. J. C. P. (2020). A comprehensive review on device-to-device communication paradigm: Trends, challenges and applications. Wireless Personal Communications, 114, 185–207. https://doi.org/10.1007/s11277-020-07358-3.

    Article  Google Scholar 

  16. Hayat, O., Ngah, R., & Zahedi, Y. (2019). In-band device to device (D2D) communication and device discovery: A survey. Wireless Personal Communications, 106(2), 451–472. https://doi.org/10.1007/s11277-019-06173-9.

    Article  Google Scholar 

  17. Lin, X., Andrews, J. G., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48. https://doi.org/10.1109/MCOM.2014.6807945.

    Article  Google Scholar 

  18. Gomez, K., Goratti, L., Rasheed, T., & Reynaud, L. (2014). Enabling disaster-resilient 4G mobile communication networks. IEEE Communications Magazine, 52(12), 66–73. https://doi.org/10.1109/MCOM.2014.6979954.

    Article  Google Scholar 

  19. Ben Halima, N., & Boujemâa, H. (2019). Optimal routing and one hop routing for D2D communications in the presence of mutual interference. Telecommunication Systems, 71(1), 55–64. https://doi.org/10.1007/s11235-018-0512-7.

    Article  Google Scholar 

  20. Chen, G., Tang, J., & Coon, J. P. (2018). Optimal routing for multihop social-based D2D communications in the internet of things. IEEE Internet of Things Journal, 5(3), 1880–1889. https://doi.org/10.1109/JIOT.2018.2817024.

    Article  Google Scholar 

  21. Shaikh, F. S., & Wismuller, R. (2018). Routing in multi-hop cellular device-to-device (D2D) networks: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2622–2657. https://doi.org/10.1109/COMST.2018.2848108.

    Article  Google Scholar 

  22. Babun, L., Yürekli, A. I., & Güvenç, I. (2015). Multi-hop and D2D communications for extending coverage in public safety scenarios. In Proceedings - conference on local computer networks, LCN (Vol. 2015-Decem, pp. 912–919). https://doi.org/10.1109/LCNW.2015.7365946

  23. Ali, K., Nguyen, H. X., Vien, Q. T., Shah, P., & Chu, Z. (2018). Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access, 6, 14643–14654. https://doi.org/10.1109/ACCESS.2018.2793532.

    Article  Google Scholar 

  24. Fodor, G., Parkvall, S., Sorrentino, S., Wallentin, P., Lu, Q., & Brahmi, N. (2014). Device-to-device communications for national security and public safety. IEEE Access, 2, 1510–1520. https://doi.org/10.1109/ACCESS.2014.2379938.

    Article  Google Scholar 

  25. Kuang, Z., Liu, G., Li, G., & Deng, X. (2019). Energy efficient resource allocation algorithm in energy harvesting-based D2D heterogeneous networks. IEEE Internet of Things Journal, 6(1), 557–567. https://doi.org/10.1109/JIOT.2018.2842738.

    Article  Google Scholar 

  26. Marttin, V., Yuzgec, U., Bayilmis, C., Kucuk, K. (2018). D2D Communication and Energy Efficiency on LTE for Public Safety Networks. In UBMK 2018 - 3rd ınternational conference on computer science and engineering (pp. 547–551). https://doi.org/10.1109/UBMK.2018.8566602

  27. Kwak, Y., Ro, S., Kim, S., Kim, Y., & Lee, J. (2014). Performance evaluation of D2D discovery with eNB based power control in LTE-advanced. In 2014 IEEE 80th vehicular technology conference (VTC2014-Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2014.6966122

  28. Ever, E., Gemikonakli, E., Nguyen, H. X., Al-Turjman, F., & Yazici, A. (2020). Performance evaluation of hybrid disaster recovery framework with D2D communications. Computer Communications, 152, 81–92. https://doi.org/10.1016/j.comcom.2020.01.021.

    Article  Google Scholar 

  29. Hayat, O., Ngah, R., & Mohd Hashim, S. Z. (2020). Performance analysis of device discovery algorithms for D2D communication. Arabian Journal for Science and Engineering, 45(3), 1457–1471. https://doi.org/10.1007/s13369-019-04006-2.

    Article  Google Scholar 

  30. Hayat, O., Ngah, R., & Mohd Hashim, S. Z. (2021). Sector scanning algorithm (SSA) for device discovery in D2D communication. International Journal of Electronics, 108(1), 45–66. https://doi.org/10.1080/00207217.2020.1756453.

    Article  Google Scholar 

  31. Osman, E. A. M. (2018). Device discovery methods in D2D communications for 5G communications system. . Tallinn University of Technology.

    Google Scholar 

  32. Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express. https://doi.org/10.1016/j.icte.2017.08.002.

    Article  Google Scholar 

  33. Araniti, G., Raschellá, A., Orsino, A., Militano, L., & Condoluci, M. (2016). Device-to-Device communications over 5G systems: Standardization, challenges and open issues. In 5G mobile communications (pp. 337–360). https://doi.org/10.1007/978-3-319-34208-5_12

  34. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hug, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49. https://doi.org/10.1109/MCOM.2009.5350367.

    Article  Google Scholar 

  35. Doppler, K., Ribeiro, C. B., & Kneckt, J. (2011). Advances in D2D communications: Energy efficient service and device discovery radio. In 2011 2nd ınternational conference on wireless communication, vehicular technology, ınformation theory and aerospace and electronic systems technology, wireless VITAE 2011. https://doi.org/10.1109/WIRELESSVITAE.2011.5940857

  36. Tang, H., Ding, Z., & Levy, B. C. (2014). Enabling D2D communications through neighbor discovery in LTE cellular networks. IEEE Transactions on Signal Processing, 62(19), 5157–5170. https://doi.org/10.1109/TSP.2014.2348950.

    Article  MathSciNet  MATH  Google Scholar 

  37. Simsek, M., Merwaday, A., Correal, N., & Güvenç, I. (2013). Device-to-device discovery based on 3GPP system level simulations. In 2013 IEEE globecom workshops, GC Wkshps 2013 (pp. 555–560). https://doi.org/10.1109/GLOCOMW.2013.6825046

  38. Vasudevan, S., Adler, M., Goeckel, D., & Towsley, D. (2013). Efficient algorithms for neighbor discovery in wireless networks. IEEE/ACM Transactions on Networking, 21(1), 69–83. https://doi.org/10.1109/TNET.2012.2189892.

    Article  Google Scholar 

  39. Sun, G., Wu, F., Gao, X., Chen, G., & Wang, W. (2013). Time-efficient protocols for neighbor discovery in wireless Ad Hoc networks. IEEE Transactions on Vehicular Technology, 62(6), 2780–2791. https://doi.org/10.1109/TVT.2013.2246204.

    Article  Google Scholar 

  40. Yang, Z. J., Huang, J. C., Chou, C. T., Hsieh, H. Y., Hsu, C. W., Yeh, P. C., & Alex Hsu, C. C. (2013). Peer discovery for device-to-device (D2D) communication in LTE in LTE-A networks. In 2013 IEEE globecom workshops, GC Wkshps 2013 (pp. 665–670). https://doi.org/10.1109/GLOCOMW.2013.6825064

  41. Zou, J., Wang, M., Zhang, J., Shu, F., Wang, J., Qian, Y., Sheng, W., & Chen, Q. (2013). Discovery signal design and its application to peer-to-peer communications in OFDMA cellular networks. IEEE Transactions on Wireless Communications, 12(8), 3995–4009. https://doi.org/10.1109/TWC.2013.071613.121395.

    Article  Google Scholar 

  42. Zou, K. J., Wang, M. W., Yang, K., Zhang, J., Sheng, W., Chen, Q., & You, X. (2014). Proximity discovery for device-to-device communications over a cellular network. IEEE Communications Magazine, 52(6), 98–107. https://doi.org/10.1109/MCOM.2014.6829951.

    Article  Google Scholar 

  43. Yang, K., Wang, M., Zou, K., Hua, M., Hu, J., Zhang, J., Sheng, W., & You, X. (2014). Device discovery for multihop cellular networks with its application in LTE. IEEE Wireless Communications, 21(5), 24–34. https://doi.org/10.1109/MWC.2014.6940430.

    Article  Google Scholar 

  44. Hayat, O., Ngah, R., & Zahedi, Y. (2018). Device discovery for D2D communication in in-band cellular networks using sphere decoder like (SDL) algorithm. Eurasip Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-018-1083-8.

    Article  Google Scholar 

  45. Yuan, H., Guo, W., & Wang, S. (2014). Emergency route selection for D2D cellular communications during an urban terrorist attack. In 2014 IEEE ınternational conference on communications workshops, ICC 2014 (pp. 237–242). https://doi.org/10.1109/ICCW.2014.6881202

  46. Ali, K., Nguyen, H. X., Shah, P., Vien, Q. T., & Bhuvanasundaram, N. (2016). Architecture for public safety network using D2D communication. In 2016 IEEE wireless communications and networking conference workshops, WCNCW 2016 (pp. 206–211). https://doi.org/10.1109/WCNCW.2016.7552700

  47. Wang, X., Zhou, H., Zhong, L., Ji, Y., Takano, K., Yamada, S., & Xue, G. (2016). Capacity-aware cost-efficient network reconstruction for post-disaster scenario. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC. https://doi.org/10.1109/PIMRC.2016.7794910.

    Article  Google Scholar 

  48. Hossain, M. A., Ray, S. K., & Lota, J. (2020). SmartDR: A device-to-device communication for post-disaster recovery. Journal of Network and Computer Applications, 171, 102813. https://doi.org/10.1016/j.jnca.2020.102813.

    Article  Google Scholar 

  49. Rappaport, T. S. (2001). Wireless Communications: Principles and practice (Prentice Hall Communications Engineering & Emerging Technologies Series). Optimization.

  50. Wu, Y., Liu, W., Wang, S., Guo, W., & Chu, X. (2015). Network coding in device-to-device (D2D) communications underlaying cellular networks. In IEEE ınternational conference on communications (Vol. 2015-Septe, pp. 2072–2077). https://doi.org/10.1109/ICC.2015.7248631

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Yüzgeç.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marttin, V., Yüzgeç, U., Bayılmış, C. et al. A Novel Approach to D2D Discovery in PSN for Post-Disaster: Throughput Based Discovery Algorithm (TDA). Wireless Pers Commun 119, 3339–3363 (2021). https://doi.org/10.1007/s11277-021-08407-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08407-1

Keywords