Skip to main content

Advertisement

Log in

Noise Reduction in VCSEL Based Wavelength Division Multiplexing System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wavelength division multiplexing (WDM) technique plays a vital role in optical fiber communication. In this paper, a 4 × 1 WDM system has been developed with Vertical Cavity Surface Emitting LASER as optical source for each input. The performance analysis has been carried for Non Return to Zero (NRZ), hyperbolic secant, Gaussian and impulse generators over complex WDM optical fiber up to 50 km with less attenuation of 0.2 dB/Km. The Signal to noise ratio of received signal through Avalanche Photo diode in the receiver is calculated. This work identifies the best pulse generator with reduced noise performance suitable for the proposed system. The proposed system is modeled in optisys13 and insightful discussions are provided from the simulated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability and Material

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Anthony, A. A., Basavaiah, J., & Patil, C. M. (2021). An approach to end-to-end audio transmission using laser communication. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08083-1.

    Article  Google Scholar 

  2. Shah, S. M. A., Latiff, M. S. A., Chowdhry, B. S., et al. (2017). Self-configured free space optical system transceiver algorithm for extreme weather conditions. Wireless Personal Communications, 95, 539–556.

    Article  Google Scholar 

  3. Herper, M., van der Lee, A., Kolb, J., Gronenborn, S., Moench, H., & Loosen, P. (2019). VCSELpumped VECSEL concept with compact design. Electronics Letters, 55(12), 705–707.

    Article  Google Scholar 

  4. Salam, N., Zabih, G., Krishna, B., & Asghar, G. (2016). Suppressing the nonlinearity of free running VCSEL using selective-optical feedback. IEEE Photonics Technology Letters, 28(2), 185–188.

    Article  Google Scholar 

  5. Liu, D., Zhang, M., Shi, Y., & Dai, D. (2020). Four-channel CWDM (de)multiplexers using cascaded multimode waveguide gratings. IEEE Photonics Technology Letters, 32(4), 192–195.

    Article  Google Scholar 

  6. Ilias, G., Apostolos, S., Panagiotis, K., & Emmanouel, A. V. (2017). Energy-optimal routing on VCSEL-based interconnected networks. IEEE/OSA Journal of Optical Communications and Networking, 9(10), 833–843.

    Article  Google Scholar 

  7. Marigo-Lombart, L., Viallon, C., Rumeau, A., Arnoult, A., Lecestre, A., Mazenq, L., Ghannam, A., Thienpont, H., Panajotov, K., & Almuneau, G. (2019). Electro-absorption modulator vertically integrated on a VCSEL: Microstrip-based high-speed electrical injection on top of a BCB layer. Journal of Lightwave Technology, 37(15), 3861–3868.

    Article  Google Scholar 

  8. Isoe, G. M., Leitch, A. W. R., & Gibbon, T. B. (2019). Real-time 850 nm multimode VCSEL to 1550 nm single mode VCSEL data routing for optical interconnects. Optoelectronics Letters, 15(4), 297–301.

    Article  Google Scholar 

  9. Rapisarda, M., Gatto, A., Martelli, P., Parolari, P., Neumeyr, C., Moreolo, M. S., Fabrega, J. M., Nadal, L., & Boffi, P. (2018). Impact of chirp in high-capacity optical metro networks employing directly-modulated VCSELs. Photonics, 5, 51.

    Article  Google Scholar 

  10. Isoe, G. M., Karembera, R. S., & Gibbon, T. B. (2020). Advanced VCSEL photonics: Multi-level PAM for spectral efficient 5G wireless transport network. Optics Communications, 461, 125273.

    Article  Google Scholar 

  11. Parolari, P., Gatto, A., Neumeyr, C., & Boffi, P. (2020). Flexible transmitters based on directly modulated VCSELs for next-generation 50G passive optical networks. IEEE/OSA Journal of Optical Communications and Networking, 12(10), 78–85.

    Article  Google Scholar 

  12. Wu, H., et al. (2020). A 448-Gb/s PAM4 FSO communication with polarization-multiplexing injection-locked VCSELs through 600 m free-space link. IEEE Access, 8, 28859–28866.

    Article  Google Scholar 

  13. Boisnard, B., et al. (2020). CW operation of a tunable 1550-nm VCSEL integrating liquid-crystal microcells. IEEE Photonics Technology Letters, 32(7), 391–394.

    Article  Google Scholar 

  14. Yeh, C. H., Yang, Y. C., Chow, C. W., Chen, Y. W., & Hsu, T. A. (2020). VCSEL and LED based visible light communication system by applying decode-and-forward relay transmission. Journal of Light wave Technology, 38(20), 5728–5732.

    Article  Google Scholar 

  15. Chang, C., Wu, C., & Choi, B. (2018). WDM-VLC receiver sensors: Large-scale filter-array detectors with optimized selection combining methods. IEEE Sensors Journal, 18(6), 2411–2420.

    Article  Google Scholar 

  16. Jana, M., Lampe, L., & Mitra, J. (2018). Interference cancellation for time-frequency packed super-nyquist WDM systems. IEEE Photonics Technology Letters, 30(24), 2099–2102.

    Article  Google Scholar 

  17. Jara, N., Vallejos, R., & Rubino, G. (2017). Blocking evaluation and wavelength dimensioning of dynamic WDM networks without wavelength conversion. IEEE/OSA Journal of Optical Communications and Networking, 9(8), 625–634.

    Article  Google Scholar 

  18. Nguyen, T., & Peuchere, C. (2017). Kalman filtering for carrier phase recovery in optical offset-QAM nyquist WDM systems. IEEE Photonics Technology Letters, 29(12), 1019–1022.

    Article  Google Scholar 

  19. Singh, S., & Singh, S. (2017). Performance analysis of spectrally encoded hybrid WDM-OCDMA network employing optical orthogonal modulation format against eavesdropper. AEU—International Journal of Electronics and Communications, 82, 492–501.

    Google Scholar 

  20. Okamoto, S., et al. (2020). A study on the effect of ultra-wide band WDM on optical transmission systems. Journal of Light wave Technology, 38(5), 1061–1070.

    Article  Google Scholar 

  21. Xia, M., & Ding, Y. (2021). Non-uniform strained quantum well amplifiers for multichannel optical signal amplification in the WDM system. Optics Communications, 480, 126485.

    Article  Google Scholar 

  22. Yeh, C. H., Guo, B. S., Chang, Y. J., Chow, C. W., & Gu, C. S. (2019). Bidirectional free space optical communication (FSO) in WDM access network with 1000-m supportable free space link. Optics Communications, 435, 394–398.

    Article  Google Scholar 

  23. Karthika, J., Rajkumar, M., & Narendiran, S. (2020). Performance enhancement of hybrid SCM/WDM system using ANN-trained Raman amplifier. Materials Today: Proceedings, 37, 2529–2534.

    Google Scholar 

  24. Kumar, C., & Kumar, G. (2020). Performance assessment of hybrid optical amplifier for higher transmission efficiency with SD-WDM system. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07780-7.

    Article  Google Scholar 

  25. Jassim, K. H., & Sulaiman, W. H. (2018). Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform. Optical Fiber Technology, 42, 75–83.

    Article  Google Scholar 

  26. Ibrahim Z., Rashidi C. B. M., Aljunid S. A., Rahman A. K., and Anuar M. S. (2016). NRZ and RZ analysis for optical CDMA based on radio over fiber (RoF) technique. In 3rd International Conference on Electronic Design (ICED), Phuket, Thailand.

  27. Kaur, A., & Dewra, S. (2016). Performance analysis of coherent optical communication system for M-QAM higher modulation level. Journal of Optical Communications, 37(4), 371–374.

    Article  Google Scholar 

  28. Tian, W., Wang, Z., Zhu, J., Zheng, L., Xu, X., Xu, J., & Wei, Z. (2016). Diode-pumped Kerr-lens mode-locked Yb: GSO laser generating 72 fs pulses. Optics and Laser Technology, 79, 137–140.

    Article  Google Scholar 

  29. Kianpour, I., Hussain, B., Mendonça, H. S., & Tavares, V. G. (2016). System-level study on impulse-radio integration-and-fire (IRIF) transceiver. AEU—International Journal of Electronics and Communications, 112(152896), 1–8.

    Google Scholar 

  30. Kurniawan P., Sujatmoko K., and Pamukti, B. (2019). Performance of OOK-RZ and NRZ modulation techniques in various receiver positions for Li-Fi In 2019 IEEE International Conference on Signals and Systems (ICSigSys), Bandung, Indonesia, (pp. 173–177).

  31. Liu, Y., Zhang, L., La, X., Liang, S., Zhao, L., & Wang, W. (2019). 10 Gb/s NRZ and 20 Gb/s PAM4 Transmission Using an EAM-Integrated Widely Tunable DBR Laser. IEEE Photonics Technology Letters, 31(22), 1826–1829.

    Article  Google Scholar 

  32. Zhao, H. Y., Jones, A. H., Chao, R. L., Ahmad, Z., Campbell, J. C., & Shi, J. W. (2019). High-speed avalanche photodiodes with wide dynamic range performance. Journal of Lightwave Technology, 37(23), 5945–5952.

    Article  Google Scholar 

  33. Khankalantary, S., Dabiri, M. T., & Safi, H. (2020). BER performance analysis of drone-assisted optical wireless systems with APD receiver. Optics Communications, 463, 125309.

    Article  Google Scholar 

  34. Gao, M., Li, C., & Xu, Z. (2018). Optimal Transmission of VLC System in the Presence of LED Nonlinearity and APD Module Saturation. IEEE Photonics Journal, 10(5), 1–14.

    Article  Google Scholar 

  35. Abdulwahid, O. S., Kostakis, I., Muttlak, S. G., Sexton, J., Ian, K., & Missous, M. (2018). Physical modelling of InGaAs–InAlAs APD and PIN photodetectors for> 25 Gb/s data rate applications. IET Optoelectronics, 13(1), 40–45.

    Article  Google Scholar 

  36. Liu, W., Tang, Y., Wang, C., & Peng, C. (2014). The hybrid scheme by adopting photon polarization in high data rate communication. Optik, 125(18), 5054–5057.

    Article  Google Scholar 

  37. Liu, W., & Xu, Z. (2020). APD nonlinearity and its impact on PAM-based visible light communication. IEEE Communications Letters, 24(5), 1057–1061.

    Article  Google Scholar 

  38. Wang, W. (2020). Uniform and high gain GaN p-i-n ultraviolet APDs enabled by Beveled-Mesa edge termination. IEEE Photonics Technology Letters, 32(21), 1357–1360.

    Article  Google Scholar 

  39. Singh, M. (2017). Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) using EDFA pre-amplifier. Wireless Personal Communication, 97, 4199–4209.

    Article  Google Scholar 

  40. Rashed, A. N. Z., Kader, H. M. A., Al-Awamry, A. A., & Abd El-Aziz, I. A. (2018). Transmission performance simulation study evaluation for high speed radio over fiber communication systems. Wireless Personal Communications, 103, 1765–1779.

    Article  Google Scholar 

  41. Israr, A., Israr, A., Khan, F., et al. (2019). Optimal modulation technique for MIMO FSO link. Wireless Personal Commuication, 109, 695–714.

    Article  Google Scholar 

  42. Cartledge, J. C., & Burley, G. S. (1989). The Effect of the laser chirping on light wave system performance. Journal of Light wave Technology, 7, 568–573.

    Article  Google Scholar 

  43. Rahman, A., Karim, R., Akhtar, J., & Istiaque, R. M. (2018). Performance Characterization of a GaAs Based 1550 nm Ga0.591 In0.409 N0.028 As0.89 Sb0.08 MQW VCSEL. International Journal of Photonics and Optical Technology, 4(1), 14–18.

    Google Scholar 

  44. Keiser, G. (2008). Optical fibre communication. (4th ed.). London: Mc.Graw Hill Publications.

    Google Scholar 

  45. Zhang, L., Wei, Z., Wang, Z., Geng, Z., Wei, G., Cheng, J., Fu, H. Y., & Dong, Y. (2021). High-speed multi-user optical wireless communication between VCSEL-integrated electronic devices. Optics Communications, 486, 126774.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SK: Conceptualization, methodology, formal analysis and investigation, writing—original draft; VS: writing—original draft; SM: supervision, writing—review and editing; VCB: supervision, writing—review and editing.

Corresponding author

Correspondence to Vidhyacharan Bhaskar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code Availability (Software Application or Custom Code)

The code that support the findings of this study are available on request from the corresponding author. The code is not publicly available due to containing information that could compromise the privacy of research participants

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithiga, S., Bhaskar, V., Malarvizhi, S. et al. Noise Reduction in VCSEL Based Wavelength Division Multiplexing System. Wireless Pers Commun 119, 3383–3397 (2021). https://doi.org/10.1007/s11277-021-08409-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08409-z

Keywords