Skip to main content
Log in

Chaos Theory and ARTFA: Emerging Tools for Interpreting ECG Signals to Diagnose Cardiac Arrhythmias

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Timely detection of cardiac abnormalities from an Electrocardiogram (ECG) signal is very essential. This requires its appropriate and efficient processing. In the literature, most of the researchers focussed on linear techniques that were applied on filtered ECG datasets leaving an ample scope for exploring the use of non-linear techniques in the presence and absence of natural noise-processes. Therefore, there is a need of supplementing the existing research on ECG signal interpretation by using non-linear techniques on noisy ECG data. Non-linear techniques are expected to yield supplementary clues about the non-linearities in the underlying cardiovascular system. One such promising non-linear technique, known as chaos theory (analysis), has been considered here to estimate reliable and robust thresholds for R-peak detection using fractal dimension, Approximate Entropy, Sample Entropy, correlation dimension, and Lyapunov exponent based on time-delay dimension (embedding). Also, time–frequency analysis techniques have shown their effectiveness for analyzing such types of non-linear and non-stationary signals due to simultaneous interpretation of the signal in both time and frequency domain. Among existing TFA techniques such as wavelet transform, short time Fourier transform, Hilbert transform, Auto-regressive Time Frequency Analysis (ARTFA) offers good time–frequency resolution. Therefore, Chaos theory and ARTFA have been considered in this paper. First, raw ECG signal was filtered using Savitzky Golay Digital Filtering (SGDF) because it retains all important signal features after filtering. Second, a novel optimal trajectory detection step was proposed on the basis of phase space reconstruction (attractors) in chaos theory. Third, ARTFA has been used to find the spectral components of the extracted features using chaos theory. Here, ARTFA has been used for finding the autoregressive coefficients in the first step and time–frequency description in the second step. Burg method has been considered for Auto-regressive modeling to fit an ARTFA model for analyzing ECG signal by minimizing (least squares) the forward and backward prediction errors. MIT-BIH arrhythmia database has been considered for validating the present research effort. Some real time signals were also tested to explore direct usage of the proposed technique in practical applications. The obtained results show that the proposed technique enhances sensitivity, positive predictive value and accuracy thereby improving the detection of arrhythmias. Computational cost of the proposed technique is reduced to a great extent by using the chaos theory (analysis) yielding efficient detection performance. All results have been obtained in MATLAB environment R2011a. Improved values viz. 99.96% SE, 99.97% PPV, and 99.93% ACC are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Available on physionet website (https://physionet.org).

Code Availability

Software application which is developed by present authors.

Abbreviations

BLW:

Base Line Wandering

ECG:

Electrocardiogram

SGDF:

Savitzky-Golay Digital Filtering

HRV:

Heart Rate Variability

ARTFA:

Auto-regressive Time Frequency Analysis

FD:

Fractal dimension

AE-χ:

Approximate Entropy

SE-χ′:

Sample Entropy

PCs:

Principal Components

PSD:

Power Spectral Density

MATLAB:

Matrix Laboratory

MIT-BIH:

Massachusetts Institute of Technology-Beth Israel Hospital

Arr:

Arrhythmia

Hz:

Hertz

FN:

False Negative

FP:

False Positive

TP:

True Postive

KNN:

K-Nearest Neighbor

DT:

Decision Tree

YW:

Yule-Walker

IFs:

Instantaneous frequencies

CWT:

Continuous wavelet transform

EMD:

Empirical mode decomposition

CD:

Correlation dimension

LE:

Lyapunov exponent

TF:

Time–Frequency

AR:

Auto-Regressive

TFA:

Time–Frequency analysis

BM:

Burg method

AIC:

Akaike’s information criterion

PCA:

Principal Component Analysis

DSE :

Sensitivity

DPPV :

Positive Predictive Value

DACC :

Accuracy

FFT:

Fast Fourier Transform

dB:

Decibel

LBBB:

Left Bundle Branch Block

PVC:

Premature ventricular contraction

AF:

Atrial fibrillation

VF:

Ventricular fibrillation

SSS:

Sick sinus syndrome

STFT:

Short-time Fourier transform

ST:

Synchrosqueezed transform

IMFs:

Intrinsic mode functions

SWT:

Synchrosqueezed wavelet transforms

References

  1. Singhal, A., Singh, P., Fatimah, B., & Pachori, R. B. (2020). An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomedical Signal Processing and Control, 57, 101741. https://doi.org/10.1016/j.bspc.2019.101741.

    Article  Google Scholar 

  2. Chawla, M. P. S. (2011). PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison. Journal of Applied Soft Computing, 11(2), 2216–2226. https://doi.org/10.1016/j.asoc.2010.08.001.

    Article  Google Scholar 

  3. Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of the Institution of Engineers Ind Series B, 97(4), 499–507. https://doi.org/10.1007/s40031-016-0247-3.

    Article  Google Scholar 

  4. Dohare, A. K., Kumar, V., & Kumar, R. (2013). An efficient new method for the detection of QRS in electrocardiogram. Jounal of Computers and Electrical Engineering, 40(5), 1717–30. https://doi.org/10.1016/j.compeleceng.2013.11.004.

    Article  Google Scholar 

  5. Li, Y. (2014). Heartbeat detection, classification and coupling analysis using electrocardiography data. Doctor of Philosophy. Department of Electrical Engineering & Computer Science, Case Western Reserve University. https://etd.ohiolink.edu/apexprod/rws_etd/send_file/ send?accession=case1405084050&disposition=inline

  6. Shang, P., Li, X., & Kamae, S. (2005). Chaotic analysis of traffic time series. Journal of Chaos, Solitons and Fractals, 25(1), 121–128. https://doi.org/10.1016/j.chaos.2004.09.104.

    Article  MATH  Google Scholar 

  7. Alhamdi, M. (2015). Analysis of human electrocardiogram for arrhythmia auto-classification and biometric recognition systems using analytic and autoregressive modeling parameters. Degree of Doctor of Engineering, University of Portsmouth. https://researchportal.port.ac.uk/portal/en /theses/analysis-of-human-electrocardiogram-for-arrhythmia-autoclassification-and-biometric-recognition-systems-using-analytic-and-autoregress ive-modeling-parameters(7bb302a7-cb94–4df2-b04a-aac1ade0beee).html

  8. Duskalov, I. (1998). Developments in ECG acquisition, preprocessing, parameter measurement, and recording. IEEE Engineers in Medical and Biology Magazine, 7(2), 50–8. https://doi.org/10.1109/51.664031.

    Article  Google Scholar 

  9. Fatimah, B., Singh, P., Singhal, A., & Pachori, R. B. (2020). Detection of apnea events from ECG segments using fourier decomposition method. Biomedical Signal Processing and Control, 61, 102005. https://doi.org/10.1016/j.bspc.2020.102005.

    Article  Google Scholar 

  10. Vandeput, S. (2010). Heart rate variability: Linear and nonlinear analysis with applications in human physiology. Dissertation of Doctor in Engineering Sciences, Leuven (Belgium): Katholieke Universiteit Leuven. https://theses.eurasip.org/theses/542/heart-rate-variability-linear-and-nonlinear/

  11. Rangayyan, R. M. (2001). Biomedical signal analysis: A case-study approach. . Wiley-Interscience.

    Book  Google Scholar 

  12. Gupta, V., & Mittal, M. (2020). A novel method of cardiac arrhythmia detection in electrocardiogram signal. International Journal of Medical Engineering and Informatics, 12(5), 489–499. https://doi.org/10.1504/IJMEI.2020.109943.

    Article  Google Scholar 

  13. Merino, M., Gomez, I. M., & Molina, A. J. (2015). Envelopment filter and K-means for the detection of QRS waveforms in the electrocardiogram. Journal of Medical Engineering and Physics, 37(6), 605–9. https://doi.org/10.1016/j.medengphy.2015.03.019.

    Article  Google Scholar 

  14. Sellami, A., & Hwang, H. (2018). A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert System With Application. https://doi.org/10.1016/j.eswa.2018.12.037.

    Article  Google Scholar 

  15. Moridani, M. K., & Pouladian, M. (2019). A novel method to ischemic heart disease detection based on non-invasive ECG imaging. Journal of Mechanics in Medicine and Biology, 19(1), 19500021–25. https://doi.org/10.1142/S0219519419500027.

    Article  Google Scholar 

  16. Khalea, A. F., Owis, M. I., & Yassine, I. A. (2015). A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert System with Application, 42(21), 8361–8368. https://doi.org/10.1016/j.eswa.2015.06.046.

    Article  Google Scholar 

  17. Acharya, U. R., Fujita, H., Adam, M., Lih, O. S., Sudarshan, V. K., Hong, T. J., Koh, J. E. W., Hagiwara, Y., Chua, C. K., Poo, C. K., & San, T. R. (2017). Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study. Information Science, 377, 17–19. https://doi.org/10.1016/j.ins.2016.10.013.

    Article  Google Scholar 

  18. Dliou, A., Latif, R., Laaboubi, M., Maoulainine, F. M. R., & Elouaham, S. (2013). Time-frequency analysis of a noised ECG signals using empirical mode decomposition and Choi-Williams techniques. International Journal of Systems, Control and Communications, 5(4), 231–245. https://doi.org/10.1504/IJSCC.2013.058177.

    Article  Google Scholar 

  19. Huijun, W., Guizhong, L., Wunchun, F. (2003). A new time-frequency analysis based upon AR model. In: Proceedings of the IEEE International Conference on Neural Networks and Signal Processing. https://doi.org/https://doi.org/10.1109/ICNNSP.2003.1279358.

  20. Singh, P., Srivastava, P.K., Patney, R.K., Joshi, S.D., Saha, K. (2013). Nonpolynomial spline based empirical mode decomposition, In: Proceedings of the Int Conf Signal Processing and Communication, pp. 435–440. https://doi.org/https://doi.org/10.1109/ICSPCom.2013.6719829.

  21. Sharma, R., Pachori, R.B., Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal EEG signals, In: Proceedings of the IEEE Int Conf on Medical Biometrics, 30 May-01 June, 2014, Shenzhen, China. https://doi.org/https://doi.org/10.1109/ICMB.2014.31.

  22. Singh, P., Joshi, S. D., Patney, R. K., & Saha, K. (2016). Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circuits System Signal Processing, 35(10), 3700–3715. https://doi.org/10.1007/s00034-015-0225-z.

    Article  MathSciNet  Google Scholar 

  23. Gupta, A., Singh, P., & Karlekar, M. (2018). A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(5), 925–35. https://doi.org/10.1109/TNSRE.2018.2818123.

    Article  Google Scholar 

  24. Daubechies, I., Lu, J., & Wu, H. T. (2011). Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 30, 243–261. https://doi.org/10.1016/j.acha.2010.08.002.

    Article  MathSciNet  MATH  Google Scholar 

  25. Sharma, M., Pachori, R. B., & Acharya, U. R. (2017). A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognitions Letters, 94, 172–179. https://doi.org/10.1016/j.patrec.2017.03.023.

    Article  Google Scholar 

  26. Singh, P., & Joshi, S. D. (2019). Some studies on multidimensional fourier theory for Hilbert transform, analytic signal and AM–FM Representation. Circuits, Systems, and Signal Processing, 38, 5623–5650. https://doi.org/10.1007/s00034-019-01133-x.

    Article  Google Scholar 

  27. Singh, P. (2020). Novel generalized Fourier representations and phase transforms. Digital Signal Processing, 106, 102830. https://doi.org/10.1016/j.dsp.2020.102830.

    Article  Google Scholar 

  28. Mehla, V. K., Singhal, A., & Singh, P. (2020). A novel approach for automated alcoholism detection using Fourier decomposition method. Journal of Neuroscience Methods, 346, 108945. https://doi.org/10.1016/j.jneumeth.2020.108945.

    Article  Google Scholar 

  29. Singh, P., Joshi, S.D., Patney, R.K., Saha, K. (2017). The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. A, 473, 20160871. http://dx.doi.org/https://doi.org/10.1098/rspa.2016.0871

  30. Staszewski, W. J., & Robertson, A. N. (2007). Time–frequency and time–scale analyses for structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 449–477. https://doi.org/10.1098/rsta.2006.1936.

    Article  MathSciNet  Google Scholar 

  31. Gupta, V., Kanungo, A., Kumar, P., Sharma, A. K., & Gupta, A. (2018). Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. International Journal of Applied Engineering Research, 13(6), 133–8.

    Google Scholar 

  32. Singh, P., & Pachori, R. B. (2017). Classification of focal and nonfocal EEG signals using features derived from Fourier-based rhythms. Journal of Mechanics in Medicine and Biology, 17(7), 1–16. https://doi.org/10.1142/S0219519417400024.

    Article  Google Scholar 

  33. Gupta, V., & Mittal, M. (2019). A Comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis. Innovation and Research in Biomedical Engineering (IRBM), 40(3), 145–156. https://doi.org/10.1016/j.irbm.2019.04.003.

    Article  Google Scholar 

  34. Jachan, M., Matz, G., & Hlawatsch, F. (2007). Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes. IEEE Transactions on Signal Process, 55(9), 4366–4381. https://doi.org/10.1109/TSP.2007.896265.

    Article  MathSciNet  MATH  Google Scholar 

  35. Xiaolin, L. (2005). Time-varying autoregressive modeling of nonstationary signals. Master's Thesis, Knoxville: University of Tennessee.

  36. Marple, S. L. J. (1982). Frequency resolution of Fourier and maximum entropy spectral estimates. Geophysics, 47(9), 1303–1307. https://doi.org/10.1190/1.1441390.

    Article  Google Scholar 

  37. Gupta, V., & Mittal, M. (2018). ECG Signals Interpretation using Chaos Theory. Journal of Advanced Research in Dynamical and Control Systems. 10(9), 2392–2397.

    Google Scholar 

  38. Paiva, J. S., Cardoso, J., & Pereira, T. (2018). Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach. Int Jour of Med Infor., 109, 30–8. https://doi.org/10.1016/j.ijmedinf.2017.10.011.

    Article  Google Scholar 

  39. Ataulla, Y. M., & Alsoufi, M. S. (2016). Wavelets in the analysis of autoregressive conditional heteroskedasticity (ARCH) models using neural network. American Journal of Applied Mathematics, 4(2), 92–8. https://doi.org/10.11648/j.ajam.20160402.14.

    Article  Google Scholar 

  40. Goldberger, A., Amaral, L., Glass, L., & Hausdorff, J. M. (2000). Components of a new research resource for complex physiologic signals. PhysioBank, PhysioToolkit, and PhysioNet, 101(23), 215–20. https://doi.org/10.1161/01.cir.101.23.e215.

    Article  Google Scholar 

  41. Guiñón, J.L. (2007). Moving average and Savitzki-Golay smoothing filters using mathcad. In: Proceedings of the Inter Conf on Eng Education – (ICEE), Sep. 3–7, 2007, Coimbra, Portugal. Available: icee2007.dei.uc.pt/proceedings/papers/39.pdf

  42. Bromba, M. U. A., & Ziegler, H. (1981). Application hint for Savitsky-Golay digital smoothing filters. Analytical Chemistry, 53(11), 1583–6. https://doi.org/10.1021/ac00234a011.

    Article  Google Scholar 

  43. Baleanu, D. (2012). Wavelet transforms and their recent applications in biology and geoscience. InTechOpen: Rijeka, Croatia. https://www.intechopen.com/books/ Wavelet Transforms and Their Recent Applications in Biology and Geoscience.

  44. Bogunovic, N., Jovic, A. (2010). Processing and analyisis of biomedical nonlinear signals by data mining methods. In: Proceedings of the 17th Inter Conf on Syst, Sig and Image Process. https://www.researchgate.net/publication/228549925

  45. Zhai, X., & Tin, C. (2018). Automated ECG classification using dual heartbeat coupling based on convolutional neural network. IEEE Access, 6, 27465–72. https://doi.org/10.1109/ACCESS.2018.2833841.

    Article  Google Scholar 

  46. Chawla, M. P. S., Verma, H. K., & Kumar, V. (2008). A new statistical PCA-ICA algorithm for location of R-peaks in ECG. International Journal of Cardiology, 129(1), 146–8. https://doi.org/10.1016/j.ijcard.2007.06.036.

    Article  Google Scholar 

  47. Chillemi, S., Barbi, M., Di Garbo, A., Balocchi, R., Michelassi, C., Carpeggiani, C., & Emdin, M. (1997). Detection of nonlinearity in the healthy heart rhythm. Methods of Information in Medicine, 36(4–5), 278–81. https://doi.org/10.1055/s-0038-1636860.

    Article  MATH  Google Scholar 

  48. Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–56. https://doi.org/10.1016/0010-4825(88)90041-8.

    Article  Google Scholar 

  49. Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297–301.

  50. Richman, J. S., & Moorman, R. J. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), 2039–49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.

    Article  Google Scholar 

  51. Bogaert, C., Beckers, F., Ramaekers, D., & Aubert, A. E. (2001). Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Autonomic Neuroscience: Basic and Clinical, 90(1–2), 142–7. https://doi.org/10.1016/S1566-0702(01)00280-6.

    Article  Google Scholar 

  52. Kennel, M. B., Brown, R., & Abarbanel, H. D. I. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6), 3403–3411. https://doi.org/10.1103/PhysRevA.45.3403.

    Article  Google Scholar 

  53. Ghoraani, B. (1998). Time-frequency feature analysis. Doctor of Philosophy. . Sharif University of Technology Department of Electrical and Computer Engineering.

    Google Scholar 

  54. Sejdic, E., Djurovic, I., & Jiang, J. (2009). Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1), 153–183. https://doi.org/10.1016/j.dsp.2007.12.004.

    Article  Google Scholar 

  55. Yaroslavsky, L. (1999). Time-frequency domain signal filtering: A next step forward. In: Proceedings of the Second International Workshop on Transforms and Filter Banks. Available: Signal.ee.bilkent.edu.tr/Nsip99/papers/62.pdf

  56. Xiao, X., Mullen, T. J., & Mukkamala, R. (2005). System identification: a multi-signal approach for probing neural cardiovascular regulation. Physiological Measurement., 26(3), 41–71. https://doi.org/10.1088/0967-3334/26/3/R01.

    Article  Google Scholar 

  57. Gill, I. S., & Ukimura, O. (2009). Contemporary interventional ultrasonography in urology. . Springer.

    Google Scholar 

  58. Burg, J. P. (1968). A new analysis technique for time series data. . NATO Advanced Study Institute on Signal Processing.

    Google Scholar 

  59. Melton, R. B. (1983). Classification of NDE waveforms with autoregressive models. Review of Progress in Quantitative Nondestructive Evaluation, 2A, 1117–26. https://doi.org/10.1007/978-1-4613-3706-5_72.

    Article  Google Scholar 

  60. Zhang, L., Xiong, G., Liu, H., Zou, H., & Guo, W. (2010). Time-frequency representation based on time-varying autoregressive model with applications to non-stationary rotor vibration analysis. Sadha, 35(2), 215–32. https://doi.org/10.1007/s12046-010-0016-y.

    Article  Google Scholar 

  61. Akar, S. A., Kara, S., Latifoglu, F., & Biggic, V. (2013). Spectral analysis of photoplethysmographic signals: The importance of preprocessing. Biomedical Signal Processing and Control, 8(1), 16–22. https://doi.org/10.1016/j.bspc.2012.04.002.

    Article  Google Scholar 

  62. Bianchi, A. M., Mainardi, L. T., & Cerutti, S. (2000). Time–frequency analysis of biomedical signals. Transactions of the Institute of Measurement and Control, 22(3), 215–230. https://doi.org/10.1177/014233120002200302.

    Article  Google Scholar 

  63. Baselli, G., Cerutti, S., Civardi, S., Lombardi, F., Malliani, A., Merri, M., Pagani, M., & Rizzo, G. (1987). Heart rate variability signal processing: a quantitative approach as an aid to diagnosis in cardiovascular pathologies. International Journal of Bio-Medical Computing, 20(1–2), 51–70. https://doi.org/10.1016/0020-7101(87)90014-6.

    Article  Google Scholar 

  64. Zetterberg, L. H. (1969). Estimation parameters for a linear difference equation with application to EEG analysis. Mathematical Bioscience, 5(3–4), 227–75. https://doi.org/10.1016/0025-5564(69)90044-3.

    Article  MathSciNet  MATH  Google Scholar 

  65. Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics., 22, 137–151. https://doi.org/10.1007/978-1-4612-1694-0_11.

    Article  MathSciNet  MATH  Google Scholar 

  66. Gupta, V., Mittal, M. (2018). Dimension reduction and classification in ECG signal interpretation using FA and PCA: A comparison. In: Proceedings of the Jangjeon Mathematical society, South Korea. 1542050872-pjms21–4–18.pdf (jangjeonopen.or.kr)

  67. Gupta, V., Mittal, M. (2018). ECG signal analysis: Past, present and future. In Proceedings of the 8th IEEE Power India International Conference, NIT Kurukshetra. https://doi:https://doi.org/10.1109/POWERI.2018.8704365

  68. Beniteza, D., Gaydeckia, P. A., Zaidib, A., & Fitzpatrick, A. P. (2001). The use of the Hilbert transform in ECG signal analysis. Computer in Biology and Medical, 31(5), 399–406. https://doi.org/10.1016/S0010-4825(01)00009-9.

    Article  Google Scholar 

  69. Kaur, H., & Rajni, R. (2017). Electrocardiogram signal analysis for R-peak detection and denoising with hybrid linearization and principal component analysis. Turkish Journal of Electrical Engineering and Computer Sciences, 25, 2163–75. https://doi.org/10.3906/elk-1604-84.

    Article  Google Scholar 

  70. Aletti, F., Bassani, T., Lucini, D., Pagani, M., & Baselli, G. (2009). Multivariate decomposition of arterial blood pressure variability for the assessment of arterial control of circulation. IEEE Transactions on Biomedical Engineering, 56(7), 1781–90. https://doi.org/10.1109/TBME.2009.2016845.

    Article  Google Scholar 

  71. Orini, M. (2011). Time-frequency analysis for the dynamic quantification of the interactions between signals related to the cardiovascular system. Degree of Doctor in philosophy, Politecnico di Milano, Italy: Universidad de Zaragoza Instituto de Investigaci´ıon en Ingenier´ıa de Arag´on. https://doi:https://doi.org/10.1007/978-3-319-58709-7_9.

  72. Kohler, B. U., Hennig, C., & Orglmeister, R. (2002). TheprinciplesofsoftwareQRS detection:Reviewingandcomparingalgorithmsfor detecting this important ECG waveform. IEEE Engineering in Medicine and Biology Magazine, 21(1), 42–57.

    Article  Google Scholar 

  73. Pan, J., & Tompkins, W. L. (1985). Areal-timeQRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–6.

    Article  Google Scholar 

  74. Kaya, Y., Pehlivan, H., & Tenekeci, M. E. (2017). Effective ECG beat classification using higher order statistic features and genetic feature selection. Biomedical Research, 28(17), 7594–603.

    Google Scholar 

  75. Vuksanovic, B., & Alhamdi, M. (2013). AR-based method for ECG classification and patient recognition. International Journal of Biometrics and Bioinformatics, 7(2), 74–92.

    Google Scholar 

  76. LabVIEW. (2013). Advanced signal processing toolkit help: Introduction to time frequency analysis (advanced signal processing toolkit), https://forums.ni.com/t5/NI-Labs-Toolkits/LabVIEW-2013-64-bit-Advanced-Signal-Processing-Toolkit/ta-p/3500458 [accessed 27 May 2019].

  77. Gupta, V., Mittal, M. (2016). Respiratory signal analysis using PCA, FFT and ARTFA. In: Proceedings of the 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Bhopal India.

  78. Acharya, R., Kumar, A., Bhat, P. S., Lim, C. M., Lyengar, S. S., Kannathal, N., & Krishnan, S. M. (2004). Classification of cardiac abnormalities using heart rate signals. Medical and Biological Engineering and Computing, 42(3), 288–293. https://doi.org/10.1007/BF02344702.

    Article  Google Scholar 

  79. Ubeyli, E. D. (2007). ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Processing, 17, 675–84. https://doi.org/10.1016/j.dsp.2006.11.009.

    Article  Google Scholar 

  80. Gupta, V., & Mittal, M. (2018). KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Journal of Procedia Computer Science-Els, 125, 18–24. https://doi.org/10.1016/j.procs.2017.12.005.

    Article  Google Scholar 

  81. Thakor, N. V., Webster, J. G., & Thompkins, W. J. (1984). Estimation of QRS complex power spectra for design of a QRS filter. IEEE Transactions on Biomedical Engineering, 31(11), 702–5. https://doi.org/10.1109/TBME.1984.325393.

    Article  Google Scholar 

  82. Kaya, Y., & Pehlivan, H. (2015). Classification of premature ventricular contraction in ECG. International Journal of Advanced Computer Science and Applications, 6(7), 34–40. https://doi.org/10.14569/IJACSA.2015.060706.

    Article  Google Scholar 

  83. Swapna, G., Acharya, U. R., VinithaSree, S., & Suri, J. S. (2013). Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intelligent Data Analysis, 17(2), 309–26. https://doi.org/10.3233/IDA-130580.

    Article  Google Scholar 

  84. Kora, P., Annavarapu, A., Yadlapalli, P., Krishna, K. S. R., & Somalaraju, V. (2017). ECG based atrial fibrillation detection using sequency ordered complex hadamard transform and hybrid firefly algorithm. Journal of Engineering Science and Technology, 20(3), 1084–1091. https://doi.org/10.1016/j.jestch.2017.02.002.

    Article  Google Scholar 

  85. Kora, P. (2017). ECG based myocardial infarction detection using hybrid firefly algorithm. Computer Methods and Programs in Biomedicine, 152, 141–9. https://doi.org/10.1016/j.cmpb.2017.09.015.

    Article  Google Scholar 

  86. Acharya, U. R., Sudarshan, V. K., Koh, J. E. W., Tan, J. H., Oh, S. L., Muhammad, A., Hagiwara, Y., Mookiah, M. R. K., Chua, K. P., Chua, C. K., Martis, R. J., & Tan, R. S. (2017). Application of higher-order spectra for the characterization of coronary artery disease using electrocardiogram signals. Biomedical Signal Processing and Control, 31, 31–43. https://doi.org/10.1016/j.bspc.2016.07.003.

    Article  Google Scholar 

  87. Nanjundegowda, R., & Meshram, V. (2018). Arrhythmia recognition and classification using kernel ICA and higher order spectra. International Journal of Engineering and Technology, 7(2), 256–62. https://doi.org/10.14419/ijet.v7i2.9535.

    Article  Google Scholar 

  88. Tary, J. B., Herrera, R. H., & Vander, B. M. (2018). Analysis of time-varying signals using continuous wavelet and synchrosqueezed transforms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/rsta.2017.0254.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Mittal, M. & Mittal, V. Chaos Theory and ARTFA: Emerging Tools for Interpreting ECG Signals to Diagnose Cardiac Arrhythmias. Wireless Pers Commun 118, 3615–3646 (2021). https://doi.org/10.1007/s11277-021-08411-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08411-5

Keywords

Navigation